About
Technology
Issues
FAQ
Search
filter by year
2024 (21)
2023 (31)
2022 (29)
2021 (37)
2020 (32)
2010-2019 (99)
2000-2009 (13)
1990-1999 (13)
1980-1989 (18)
1970-1979 (5)
1960-1969 (1)
Similar Keywords
materials project (312)
21-40 of (312 documents found)
2018
490
Matminer: An open source toolkit for materials data mining
Computational Materials Science
(
3.1
★★★
), 152, 60-69.
Cite
Citations
Logan Ward (67, 3.9K)
Yinan Li (36, 794)
Qi Wang (10, 1.3K)
2023
4
A database of molecular properties integrated in the Materials Project
Digital Discovery
(
5.7
★★★
), 2, 1862-1882.
Cite
Citations
Evan Walter Clark Spotte-smith (29, 392)
Samuel M Blau (17, 414)
Patrick Huck (10, 387)
2018
87
Automated generation and ensemble-learned matching of X-ray absorption spectra
Npj Computational Materials
(
9.1
★★★
), 4, .
Cite
Citations
Chi Chen (64, 7.4K)
Fernando D Vila (58, 2.6K)
Hanmei Tang (16, 1.4K)
2023
74
CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling
Nature Machine Intelligence
(
15.2
★★★
), 5, 1031-1041.
Cite
Citations
Peichen Zhong (13, 285)
Kyujung Jun (15, 243)
Christopher J Bartel (54, 3.7K)
2017
271
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
Physical Review Letters
(
8.0
★★★
), 118, 106101.
Cite
Citations
Michael Ashton (11, 1.0K)
Susan B Sinnott (260, 13.4K)
Richard G Hennig (176, 14.9K)
2017
169
Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures
Nano Letters
(
9.5
★★★
), 17, 1915-1923.
Cite
Citations
Gowoon Cheon (11, 803)
Austin D Sendek (23, 2.4K)
Yuan Chen (5, 232)
2024
0
matbench-genmetrics: A Python library for benchmarking crystal structure generative models using time-based splits of Materials Project structures
Journal of Open Source Software
(
4.8
★★★
), 9, 5618.
Cite
Citations
Sterling G Baird (16, 133)
Hasan M Sayeed (4, 13)
Joseph H Montoya (57, 8.2K)
2018
161
Computational Screening of 2D Materials and Rational Design of Heterojunctions for Water Splitting Photocatalysts
Small Methods
(
9.6
★★★
), 2, 1700359.
Cite
Citations
Juliana Alvares-teodoro (192, 2.8K)
Xu Zhang (41, 4.6K)
Xudong Zhao (34, 3.9K)
2018
11
The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools
Shyue Ping Ong (185, 25.1K)
Anubhav Jain (153, 19.5K)
Shyam Dwaraknath (40, 1.9K)
2019
211
2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches
Scientific Data
(
5.4
★★★
), 6, 86.
Cite
Citations
Jun Zhou (77, 3.7K)
Lei Shen (128, 5.2K)
Kristin A Persson (271, 29.4K)
2020
132
A critical examination of compound stability predictions from machine-learned formation energies
Npj Computational Materials
(
9.1
★★★
), 6, .
Cite
Citations
Alexander Dunn (11, 1.6K)
Anubhav Jain (153, 19.5K)
Christopher J Bartel (54, 3.7K)
2017
106
Computational prediction of new auxetic materials
Nature Communications
(
13.2
★★★
), 8, 323.
Cite
Citations
Kristin A Persson (271, 29.4K)
2020
68
Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning
Journal of the American Chemical Society
(
14.6
★★★
), 142, 18836-18843.
Cite
Citations
Geun Ho Gu (29, 1.4K)
Juhwan Noh (19, 1.3K)
Yousung Jung (231, 25.3K)
2015
11
A Community Contribution Framework for Sharing Materials Data with Materials Project
Anubhav Jain (153, 19.5K)
Dan Gunter (31, 3.5K)
Donny Winston (19, 1.8K)
2015
329
Crystal structure representations for machine learning models of formation energies
International Journal of Quantum Chemistry
(
2.1
★★★
), 115, 1094-1101.
Cite
Citations
Rickard Armiento (66, 3.4K)
Alexander Lindmaa (2, 681)
O Anatole Von Lilienfeld (126, 12.8K)
2016
201
Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment
Journal of Materials Chemistry C
(
5.6
★★★
), 4, 4414-4426.
Cite
Citations
Paola Rogliani (612, 21.3K)
Bryce Meredig (30, 5.2K)
G Jeffrey Snyder (555, 64.7K)
2018
112
Active learning for accelerated design of layered materials
Npj Computational Materials
(
9.1
★★★
), 4, .
Cite
Citations
Aiichiro Nakano (285, 7.7K)
David J Singh (409, 50.8K)
Kristin A Persson (271, 29.4K)
2019
114
Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries
ACS Applied Materials & Interfaces
(
8.3
★★★
), 11, 18494-18503.
Cite
Citations
Jesse Eickholt (29, 1.3K)
Marco Fornari (104, 3.4K)
Veronica Barone (42, 3.2K)
2019
47
Candidate Inorganic Photovoltaic Materials from Electronic Structure-Based Optical Absorption and Charge Transport Proxies
Chemistry of Materials
(
7.1
★★★
), 31, 1561-1574.
Cite
Citations
Douglas H Fabini (28, 2.0K)
Ram Seshadri (453, 25.8K)
2021
38
Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration
ACS Nano
(
15.3
★★★
), 15, 3971-3995.
Cite
Citations
Jiwon Yeom (7, 140)
Gun Park (11, 162)
Hyeonmuk Kang (5, 95)
1
2
3
4
site/software ©
exaly
; All materials licenced under
CC by-SA
.