Skip to main content

Advertisement

Log in

Techno-Economic and Environmental Assessment for Biomethane Production and Cogeneration Scenarios from OFMSW in Mexico

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Mexico City is one of the largest cities in the world and therefore there is a high generation of waste, of which 44% is equivalent to the Organic Fraction of Municipal Solid Waste (OFMSW). In this work, a characterization of the household OFMSW was carried out, and two case studies were evaluated for the application of biogas production by anaerobic digestion process using OFMSW. CASE I considers obtaining biomethane, while CASE II involves energy cogeneration. An economic and environmental evaluation was carried out on different amounts of OFMSW (100–500 MT). The net present value (NPV) of this project (CASE I, NPV =  − US$18,915,067/year and CASE II, NPV =  − US$28,636,890/year) does not show the viability of the process, unless the support of a subsidy is considered. The value of the subsidy to find NPV = 0 is 5.64% for CASE I and 6.84% for CASE II, on the total investment at 200 MT of OFMSW. On the other hand, the WAste Reduction (WAR) analysis algorithm was used to determine the potential for environmental impact (PEI). This criterion considers the indexes of eight categories, where CASE I = 574,820 PEI/year and CASE II = 570,479 PEI/year. The in-depth research of this work helps to maintain the anaerobic digestion process in a circular economy context.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Palacio, J.C.E., et al.: Municipal solid waste management and energy recovery. Energy Convers. (2019). https://doi.org/10.5772/intechopen.79235

    Article  Google Scholar 

  2. Poniente, B., Plant, C., Inoculum, A., Nirmalkar, K., Murugesan, S., Garc, J.: Digest organic waste. Energies 12(12), 2343 (2019). https://doi.org/10.3390/en12122343

    Article  Google Scholar 

  3. Cadena, C.E.M., Pérez, R.E.M.: Organic waste production in commercial and services economic units in Mexico City. Estud. Demogr. Urbanos Col. Mex. 33(3), 733–767 (2018). https://doi.org/10.24201/edu.v33i3.1804

    Article  Google Scholar 

  4. Kiyasudeen, K., Ibrahim, S.M.H., Quaik, S., Ismail, S.A.: Prospects of Organic Waste Management and the Significance of Earthworms, pp. 23–44. Springer, New York (2016)

    Book  Google Scholar 

  5. Lin, L., Shah, A., Keener, H., Li, Y.: Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings. Waste Manag. 85, 405–416 (2019). https://doi.org/10.1016/j.wasman.2018.12.037

    Article  Google Scholar 

  6. Choudhary, A., Kumar, A., Kumar, S.: Techno-economic analysis, kinetics, global warming potential comparison and optimization of a pilot-scale unheated semi-continuous anaerobic reactor in a hilly area: for north Indian hilly states. Renew. Energy 155, 1181–1190 (2020). https://doi.org/10.1016/j.renene.2020.04.034

    Article  Google Scholar 

  7. Tian, H., et al.: Life cycle assessment of food waste to energy and resources: centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renew. Sustain. Energy Rev. 150, 111489 (2021). https://doi.org/10.1016/j.rser.2021.111489

    Article  Google Scholar 

  8. Tyagi, V.K., Fdez-Güelfo, L.A., Zhou, Y., Álvarez-Gallego, C.J., Garcia, L.I.R., Ng, W.J.: Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges. Renew. Sustain. Energy Rev. 93, 380–399 (2018). https://doi.org/10.1016/j.rser.2018.05.051

    Article  Google Scholar 

  9. Vasco-Correa, J., Khanal, S., Manandhar, A., Shah, A.: Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 247, 1015–1026 (2018). https://doi.org/10.1016/j.biortech.2017.09.004

    Article  Google Scholar 

  10. Roychowdhury, P., Alghazo, J.M., Debnath, B., Chatterjee, S., Ouda, O.K.M.: Security Threat Analysis and Prevention Techniques in Electronic Waste. Springer, Singapore (2019)

    Book  Google Scholar 

  11. Chen, J.L., Ortiz, R., Steele, T.W.J., Stuckey, D.C.: Toxicants inhibiting anaerobic digestion: a review. Biotechnol. Adv. 32(8), 1523–1534 (2014). https://doi.org/10.1016/j.biotechadv.2014.10.005

    Article  Google Scholar 

  12. Campuzano, R., González-Martínez, S.: Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 54, 3–12 (2016). https://doi.org/10.1016/j.wasman.2016.05.016

    Article  Google Scholar 

  13. Fisgativa, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264–274 (2016). https://doi.org/10.1016/j.wasman.2016.01.041

    Article  Google Scholar 

  14. Romo Millares, C.A., Medrano Vaca, C., Romero Tehuitzil, H., Arvizu Fernández, J.L., Huacuz Villamar, J., Beltrán Adán, J.: Generacion de electricidad mediante residuos solidos urbanos, Unidad Electrif., p. 79. https://www.ineel.mx/docu/Guia-RSU.pdf#page=20&zoom=auto,-99,466 (2012)

  15. Murphy, J.D., Power, N.: Technical and economic analysis of biogas production in Ireland utilising three different crop rotations. Appl. Energy 86(1), 25–36 (2009). https://doi.org/10.1016/j.apenergy.2008.03.015

    Article  Google Scholar 

  16. Montiel-Corona, V., Revah, S., Morales, M.: Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor-indoor conditions. Int. J. Hydrogen Energy 40(30), 9096–9105 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.067

    Article  Google Scholar 

  17. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  18. Behera, B.K., Varma, A., Behera, B.K., Varma, A.: Green Gaseous Fuel Technology. Springer, Cham (2019)

    Book  Google Scholar 

  19. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5), 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  Google Scholar 

  20. Escamilla García, P.E., Tavera Cortés, M.E., Sandoval Gómez, R.J., Salinas Callejas, E., Alvarado Raya, H.E.: Economic feasibility analysis for electrical generation from biogas in waste disposal sites in Mexico City. Appl. Econ. 48(59), 5761–5771 (2016). https://doi.org/10.1080/00036846.2016.1184378

    Article  Google Scholar 

  21. Ali, G., Nitivattananon, V., Abbas, S., Sabir, M.: Green waste to biogas: renewable energy possibilities for Thailands green markets. Renew. Sustain. Energy Rev. 16(7), 5423–5429 (2012). https://doi.org/10.1016/j.rser.2012.05.021

    Article  Google Scholar 

  22. Akbulut, A.: Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdaĝi{dotless} case study. Energy 44(1), 381–390 (2012). https://doi.org/10.1016/j.energy.2012.06.017

    Article  Google Scholar 

  23. Carlsson, M., Naroznova, I., Moller, J., Scheutz, C., Lagerkvist, A.: Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems. Resour. Conserv. Recycl. 102, 58–66 (2015). https://doi.org/10.1016/j.resconrec.2015.06.012

    Article  Google Scholar 

  24. Jin, Y., Chen, T., Chen, X., Yu, Z.: Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Appl. Energy 151, 227–236 (2015). https://doi.org/10.1016/j.apenergy.2015.04.058

    Article  Google Scholar 

  25. Bacenetti, J., Negri, M., Fiala, M., González-García, S.: Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci. Total Environ. 463–464, 541–551 (2013). https://doi.org/10.1016/j.scitotenv.2013.06.058

    Article  Google Scholar 

  26. Ebner, J.H., et al.: Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste. Environ. Sci. Technol. 49(18), 11199–11208 (2015). https://doi.org/10.1021/acs.est.5b01331

    Article  Google Scholar 

  27. Evangelisti, S., Lettieri, P., Borello, D., Clift, R.: Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Manag. 34(1), 226–237 (2014). https://doi.org/10.1016/j.wasman.2013.09.013

    Article  Google Scholar 

  28. Parra-Ramírez, D., Solarte-Toro, J.C., Cardona-Alzate, C.A.: Techno-economic and environmental analysis of biogas production from plantain pseudostem waste in Colombia. Waste Biomass Valoriz. 11(7), 3161–3171 (2020). https://doi.org/10.1007/s12649-019-00643-8

    Article  Google Scholar 

  29. Hennig, C., Gawor, M.: Bioenergy production and use: comparative analysis of the economic and environmental effects. Energy Convers. Manag. 63, 130–137 (2012). https://doi.org/10.1016/j.enconman.2012.03.031

    Article  Google Scholar 

  30. Nakasima-López, M., Taboada-González, P., Aguilar-Virgen, Q., Velázquez-Limón, N.: Adaptación de Inóculos Durante el Arranque de la Digestión Anaerobia con Residuos Sólidos Orgánicos. Inf. Tecnol. 28(1), 199–208 (2017). https://doi.org/10.4067/S0718-07642017000100020

    Article  Google Scholar 

  31. Rodríguez-Pimentel, R.I., Rodríguez-Pérez, S., Monroy-Hermosillo, O., Ramírez-Vives, F.: Effect of organic loading rate on the performance of two-stage anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). Water Sci. Technol. 72(3), 384–390 (2015). https://doi.org/10.2166/wst.2015.223

    Article  Google Scholar 

  32. Bacab, F.C., et al.: Two phase anaerobic digestion system of municipal solid waste by utilizing microaeration and granular activated carbon. Energies 13(4), 933 (2020). https://doi.org/10.3390/en13040933

    Article  Google Scholar 

  33. Ramírez-Islas, M.E., Güereca, L.P., Sosa-Rodriguez, F.S., Cobos-Peralta, M.A.: Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment. Waste Manag. 102, 85–96 (2020). https://doi.org/10.1016/j.wasman.2019.10.012

    Article  Google Scholar 

  34. Rivas-Garcia, P., Botello-Alvarez, J.E., Abel Seabra, J.E., Da Silva Walter, A.C., Estrada Baltazar, A.: Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective. Environ. Technol. (UK) 36(17), 2198–2209 (2015). https://doi.org/10.1080/09593330.2015.1024758

    Article  Google Scholar 

  35. Tsydenova, N., Morillas, A.V., Hernández, Á.M., Soria, D.R., Wilches, C., Pehlken, A.: Feasibility and barriers for anaerobic digestion in Mexico City. Sustainability 11(15), 1–21 (2019). https://doi.org/10.3390/su11154114

    Article  Google Scholar 

  36. Gutierrez, E.C., Xia, A., Murphy, J.D.: Can slurry biogas systems be cost effective without subsidy in Mexico? Renew. Energy 95, 22–30 (2016). https://doi.org/10.1016/j.renene.2016.03.096

    Article  Google Scholar 

  37. Mwirigi, J., et al.: Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review. Biomass Bioenergy 70, 17–25 (2014). https://doi.org/10.1016/j.biombioe.2014.02.018

    Article  Google Scholar 

  38. Vu, T.K.V., Vu, D.Q., Jensen, L.S., Sommer, S.G., Bruun, S.: Life cycle assessment of biogas production in small-scale household digesters in Vietnam. Asian-Australas. J. Anim. Sci. 28(5), 716–729 (2015). https://doi.org/10.5713/ajas.14.0683

    Article  Google Scholar 

  39. Mezzullo, W.G., McManus, M.C., Hammond, G.P.: Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste. Appl. Energy 102, 657–664 (2013). https://doi.org/10.1016/j.apenergy.2012.08.008

    Article  Google Scholar 

  40. Roubík, H., Mazancová, J., Banout, J., Verner, V.: Addressing problems at small-scale biogas plants: a case study from central Vietnam. J. Clean. Prod. 112, 2784–2792 (2016). https://doi.org/10.1016/j.jclepro.2015.09.114

    Article  Google Scholar 

  41. Spyridonidis, A., Vasiliadou, I.A., Akratos, C.S., Stamatelatou, K.: Performance of a full-scale biogas plant operation in greece and its impact on the circular economy. Water (Switzerland) 12(11), 1–19 (2020). https://doi.org/10.3390/w12113074

    Article  Google Scholar 

  42. Chotwattanasak, J., Puetpaiboon, U.: Full scale anaerobic digester for treating palm oil mill wastewater. J. Sustain. Energy Environ. 2(3), 133–136 (2013)

    Google Scholar 

  43. Osunde, P.O., Orhorhoro, E.K., Ebunilo, P.O.B.: Design of three stages continuous anaerobic digestion (AD) Plant. Am. J. Eng. Res. 6(11), 311–321 (2017)

    Google Scholar 

  44. Rapport, J.L., Zhang, R., Williams, R.B., Jenkins, B.M.: Anaerobic digestion technologies for the treatment of municipal solid waste. Int. J. Environ. Waste Manag. 9(1–2), 100–122 (2012). https://doi.org/10.1504/IJEWM.2012.044163

    Article  Google Scholar 

  45. Challen-Urbanic, J.M., Van Opstal, B., Parker, W.: Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW): full scale vs laboratory results. J. Solid Waste Technol. Manag. 37(1), 33–39 (2011). https://doi.org/10.5276/JSWTM.2011.33

    Article  Google Scholar 

  46. Anaya-Durand, A., Pedroza-Flores, H.: Scale-up: Escalamiento, el arte de la ingeniería química. Cienc. Ed. 23(1), 31–39 (2008)

    Google Scholar 

  47. Greenberg, A.E.: Advances in standard methods for the examination of water and wastewater. In: Proceedings of the AWWA Water Qual. Technol. Conf., pp. 11–13 (1984)

  48. Yang, L., Xu, F., Ge, X., Li, Y.: Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 44, 824–834 (2015). https://doi.org/10.1016/j.rser.2015.01.002

    Article  Google Scholar 

  49. Ullah-Khan, I., et al.: Biogas as a renewable energy fuel: a review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 150, 277–294 (2017). https://doi.org/10.1016/j.enconman.2017.08.035

    Article  Google Scholar 

  50. Khan, M.U., et al.: Current status of biogas upgrading for direct biomethane use: a review. Renew. Sustain. Energy Rev. 149, 111343 (2021). https://doi.org/10.1016/j.rser.2021.111343

    Article  Google Scholar 

  51. Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F., Zhang, C.: Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. J. Clean. Prod. 242, 118195 (2020). https://doi.org/10.1016/j.jclepro.2019.118195

    Article  Google Scholar 

  52. Seider, W., Seader, J.D., Lewin, D.: Product and Process Design Principles. Synthesis, Analysis, and Evaluation, vol. 53. Wiley, New York (2003)

    Google Scholar 

  53. Zhao, X., Yao, G., Tyner, W.E.: Quantifying breakeven price distributions in stochastic techno-economic analysis. Appl. Energy 183, 318–326 (2016). https://doi.org/10.1016/j.apenergy.2016.08.184

    Article  Google Scholar 

  54. La Rosa, A.D.: Life Cycle Assessment of Biopolymers. Elsevier, Amsterdam (2016)

    Book  Google Scholar 

  55. Young, D., Scharp, R., Cabezas, H.: The waste reduction (WAR) algorithm : environmental impacts, energy consumption, and engineering economics. Waste Manag. 20, 605–615 (2000)

    Article  Google Scholar 

  56. Hosseini Koupaie, E., Azizi, A., Bazyar Lakeh, A.A., Hafez, H., Elbeshbishy, E.: Comparison of liquid and dewatered digestate as inoculum for anaerobic digestion of organic solid wastes. Waste Manag. 87, 228–236 (2019). https://doi.org/10.1016/j.wasman.2019.02.014

    Article  Google Scholar 

  57. Velmurugan, B., Ramanujam, R.A.: Kepadatan Penduduk Di Kabupaten Pemalang Tahun 2014. Int. J. Emerg. Sci. 1, 478–486 (2015)

    Google Scholar 

  58. Yang, G., Zhang, P., Zhang, G., Wang, Y., Yang, A.: Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresour. Technol. 192, 126–130 (2015). https://doi.org/10.1016/j.biortech.2015.05.076

    Article  Google Scholar 

  59. Lopez-Arenas, T., González-Contreras, M., Anaya-Reza, O., Sales-Cruz, M.: Analysis of the fermentation strategy and its impact on the economics of the production process of PHB (polyhydroxybutyrate). Comput. Chem. Eng. 107, 140–150 (2017). https://doi.org/10.1016/j.compchemeng.2017.03.009

    Article  Google Scholar 

  60. Gebrezgabher, S.A., Meuwissen, M.P.M., Prins, B.A.M., Lansink, A.G.J.M.O.: Economic analysis of anaerobic digestion: a case of Green power biogas plant in the Netherlands. NJAS Wageningen J. Life Sci. 57(2), 109–115 (2010). https://doi.org/10.1016/j.njas.2009.07.006

    Article  Google Scholar 

  61. Zheng, L., et al.: What could China give to and take from other countries in terms of the development of the biogas industry? Sustainability 12(4), 1490 (2020). https://doi.org/10.3390/su12041490

    Article  Google Scholar 

  62. Verbeeck, K., Buelens, L.C., Galvita, V.V., Marin, G.B., Van Geem, K.M., Rabaey, K.: Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 11(7), 1788–1802 (2018). https://doi.org/10.1039/c8ee01059e

    Article  Google Scholar 

  63. Wang, J., Chai, Y., Shao, Y., Qian, X.: Techno-economic Assessment of Biogas Project: a Longitudinal Case Study from Japan. Resour. Conserv. Recycl. 164, 105174 (2021). https://doi.org/10.1016/j.resconrec.2020.105174

    Article  Google Scholar 

  64. Grossmann, I.E., Drabbant, R., Jain, R.K.: Incorporating toxicology in the synthesis of industrial chemical complexes. Chem. Eng. Commun. 17(1–6), 151–170 (1982). https://doi.org/10.1080/00986448208911622

    Article  Google Scholar 

  65. EPA.GOV: “Understanding Global Warming Potentials | Greenhouse Gas (GHG) Emissions | US EPA,” Jan. 19, 2017. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials. Accessed 10 Aug 2020

Download references

Acknowledgements

This work was financially supported by the “Fondo Sectorial SENER-CONACYT Sustentabilidad Energética, Clúster Biocombustibles Gaseosos” (Project 247006) and also by CONACYT-MEXICO (702865 and 706398). O. Anaya -Reza is thankful for the post-doctoral grant provided by the General Directorate of Academic Personnel Affairs of the National Autonomous University of Mexico (DGAPA-UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Durán-Moreno.

Ethics declarations

Conflict of Interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya-Reza, O., Altamirano-Corona, M.F., Castelán-Rodríguez, G. et al. Techno-Economic and Environmental Assessment for Biomethane Production and Cogeneration Scenarios from OFMSW in Mexico. Waste Biomass Valor 13, 1059–1075 (2022). https://doi.org/10.1007/s12649-021-01592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01592-x

Keywords

Navigation