Skip to main content

Advertisement

Log in

Marginal effects and incremental effects in two-part models for endogenous healthcare utilization in health services research

  • Published:
Health Services and Outcomes Research Methodology Aims and scope Submit manuscript

Abstract

In health services research, endogenous healthcare utilization refers to the notion that the choice of utilizing health services is endogenous due to its correlation with the intensity of utilization outcomes, such as the number of emergency room visits. Greene in (Empir Econ 36:133–173, 2009) extended four conventional two-part models for zero-abundant count utilization to the two-part models that account for endogenous utilization. However, statistical inference on the (average) marginal and incremental effects in these models has not been carefully studied. The present article provides the estimation formulations for (average) marginal and incremental effects of the four two-part models: zero-inflated Poisson and negative binomial models, and hurdle Poisson and negative binomial models with correlated errors that characterize endogenous healthcare utilization. The variance estimation derived from the delta method is provided to facilitate the statistical inference of these effects. We then perform simulation studies to numerically justify our methodology. An empirical study is presented to investigate the average effects of household income and health insurance status on healthcare utilization with the German Scocioeconomic Panel data. The four models give consistent results regarding interpretations for moral hazards and adverse selection in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, A., Rathouz, P.J.: Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics 6, 93–109 (2005)

    Article  Google Scholar 

  • Bratti, M., Miranda, A.: Endogenous treatment effects for count data models with endogenous participation or sample selection. Health Econ. 20, 1090–1109 (2011)

    Article  Google Scholar 

  • Deb, P., Norton, E.: Modeling healthcare expenditures and use. Annu. Rev. Public Health 39, 489–505 (2018)

    Article  Google Scholar 

  • Engle, R.F., Hendry, D.F., Richard, J.F.: Exogeneity. Econometrica 51, 277–304 (1983)

    Article  Google Scholar 

  • Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G.: Longitudinal Data Analysis. Chapman & Hall/CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  • Frick, J.R.: A General Introduction to the German Socio-Economic Panel Study (SOEP)-Design, Contents and Data Structure (Waves A-V, 1984–2005). Deutsches Institut für Wirtschaftsfor-schung, Berlin (2006)

    Google Scholar 

  • Greene, W.H.: Accounting for excess zeroes and sample selection in Poisson and negative binomial regression models. NYU Working Paper No. EC-94-10: Department of Economics, New York University. 1994. Available at SSRN: https://ssrn.com/abstract=1293115

  • Greene, W.H.: Econometric Analysis, 5th edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  • Greene, W.H.: Econometric Analysis, 8th edn. Pearson, New York (2018)

    Google Scholar 

  • Greene, W.: Models for count data with endogenous utilization. Empir. Econ. 36, 133–173 (2009)

    Article  Google Scholar 

  • Hur, K., Hedeker, D., Henderson, W., Khuri, S., Delay, J.: Modeling clustered count data with excess zeros in health care outcomes research. Health Serv. Outcomes Res. Method. 3, 5–20 (2002)

    Article  Google Scholar 

  • Kavand, H., Voia, M.: Estimation of healthcare demand and its implication on income effects of individuals. In: Greene W., Khalaf L., Makdissi P., Sickles R., Veall M., Voia MC. (eds) Productivity and Inequality. In: NAPW 2016. Springer Proceedings in Business and Economics. 2018. Springer, Cham (2018)

  • Krinsky, I., Robb, A.L.: On approximating the statistical properties of elasticities: a correction. Rev. Econ. Stat. 72, 189–190 (1990)

    Article  Google Scholar 

  • Lambert, D.: Zero-inflated Poisson regression with an application to defects in manufacturing. Technometrics 34, 1–4 (1992)

    Article  Google Scholar 

  • Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., Schabenberger, O.: SAS for Mixed Model, 2nd edn. SAS Institute Inc., Cary (2006)

    Google Scholar 

  • Liu, L., Strawderman, R.L., Cowen, M.E., Shih, Y.T.: A flexible two-part random effects model for correlated medical costs. J. Health Econ. 29, 110–123 (2010)

    Article  Google Scholar 

  • Liu, X.Y., Zhang, B., Tang, L., Zhang, Z.W., Allison, J.J., Sirivastava, D.K., Zhang, H.: Are marginalized two-part models superior to non-marginalized two-part models for count data with excess zeroes? Estimation of marginal effects, model misspecification, and model selection. Stat. Methods Med. Res. 18, 175–214 (2018)

    Article  Google Scholar 

  • Mihaylova, B., Briggs, A., O’Hagan, A., Thompson, S.: Review of statistical methods for analysing healthcare resources and costs. Health Econ. 20, 897–916 (2011)

    Article  Google Scholar 

  • Mullahy, J.: Specification and testing of some modified count data models. J. Econ. 33, 341–365 (1986)

    Article  Google Scholar 

  • Riphahn, R.T., Wambach, A., Million, A.: Incentive effects in the demand for healthcare: a bivariate panel count data estimation. J. Appl. Econ. 18, 387–405 (2003)

    Article  Google Scholar 

  • SAS/STAT 14.1 User’s Guide, the NLMIXED Procedure. Cary, NC: SAS Institute Inc., (2015)

  • Terza, J.V.: Estimating count data models with endogenous switching: sample selection and endogenous treatment effects. J. Econ. 84, 129–154 (1998)

    Article  Google Scholar 

  • Wagner, G.G., Frick, J.R., Schupp, J.: The German Socio-Economic Panel Study (SOEP)—Scope. Evolut. Enhanc. SSRN Electr. J. 127, 139–169 (2007)

    Google Scholar 

  • Winkelmann, R.: Healthcare reform and the number of doctor visits-an econometric analysis. J. Appl. Econ. 19, 455–472 (2004)

    Article  Google Scholar 

  • Winkelmann, R.: Econometric Analysis of Count Data, 5th edn. Springer, Berlin (2008)

    Google Scholar 

  • Wooldridge, J.: Econometric Analysis of Cross Section and Panel Data. The MIT Press, New York (2010)

    Google Scholar 

Download references

Funding

H.Z. receives supports from the Northwestern Brain Tumor SPORE (NCI Grant #P50CA221747), Mesulam Center for Cognitive Neurology and Alzheimer’s Disease (NIA Grant #P30AG013854), and Robert H. Lurie Comprehensive Cancer Center (NCI Grant #P30CA060553), all of which are affiliated with Northwestern University Feinberg School of Medicine in Chicago, IL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Bo Zhang.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not applicable, as the article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Density functions and log-likelihood functions

1.1 Zero-inflated Poisson and zero-inflated negative binomial models with endogenous utilization

In the framework of zero-inflated models with endogenous utilization, for the \({\hbox {ZIP}} _{\mathrm{eu}}\) model, the marginal probability function is given by

$$\begin{aligned} f(y_i|x_i,z_i,\varepsilon _i) = {\left\{ \begin{array}{ll} \varPhi (-A_i) + \varPhi (A_i) e^{-e^{x_i'\beta +\sigma \varepsilon _i}},&{} \mathrm{for~~ } y_i =0,\\ \varPhi (A_i) {e^{-e^{x_i'\beta +\sigma \varepsilon _i}}e^{(x_i'\beta +\sigma \varepsilon _i)y_i}}/{y_i!},&{} \mathrm{for~~ } y_i =1,2,\dots , \end{array}\right. } \end{aligned}$$

where \(\frac{\mathrm{var}(y_i|x_i, z_i, \varepsilon _i)}{\mathrm{E}(y_i|x_i, z_i, \varepsilon _i)} =1+\varPhi (-A_i)e^{x_i'\beta +\sigma \varepsilon _i}\), which demonstrates overdispersion of the outcomes. If we denote the parameter by \(\theta =(\beta ', \gamma ', \rho ,\sigma )\), and the log-likelihood function is

$$\begin{aligned} \ell (\theta | x_i,z_i)&= {} \sum \limits _{i=1,\ldots ,n,y_i=0} \ln \int _{-\infty }^\infty \left\{ \varPhi (-A_i) + \varPhi (A_i) e^{-e^{x_i'\beta +\sigma \varepsilon _i}}\right\} \phi (\varepsilon _i)d\varepsilon _i\nonumber \\&\quad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \int _{-\infty }^\infty \frac{e^{-e^{x_i'\beta +\sigma \varepsilon _i}}e^{(x_i'\beta +\sigma \varepsilon _i)y_i}}{y_i!} \varPhi (A_i) \phi (\varepsilon _i)d\varepsilon _i. \end{aligned}$$
(24)

for the \(\hbox {ZINB}_{\mathrm{eu}}\) model, the marginal probability function is as below

$$\begin{aligned} f(y_i|x_i,z_i,\varepsilon _i) = {\left\{ \begin{array}{ll} \displaystyle \varPhi (-A_i) + \varPhi (A_i) \left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha ,&{} \mathrm{for~~ } y_i =0,\\ \displaystyle \frac{\varPhi (A_i) \varGamma (y_i+\alpha )}{\varGamma (\alpha )\varGamma (y_i+1)} \left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha \left( \frac{e^{x_i'\beta +\sigma \varepsilon _i}}{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^{y_i}, &{} \mathrm{for~~ } y_i =1,2,\dots , \end{array}\right. } \end{aligned}$$

where \(\frac{\mathrm{var}(y_i|x_i, z_i, \varepsilon _i)}{\mathrm{E}(y_i|x_i, z_i, \varepsilon _i)} =1+\varPhi (-A_i)e^{x_i'\beta +\sigma \varepsilon _i} +\frac{e^{x_i'\beta +\sigma \varepsilon _i} }{\alpha }\). We can see that the overdispersion in the \(\hbox {ZINB}_{\mathrm{eu}}\)  models is more intense than that in the regular NB models. Let’s denote the parameter by \(\theta =(\beta ', \gamma ', \rho ,\sigma ,\alpha )\). Then, the log-likelihood function is

$$\begin{aligned} \ell (\theta | x_i,z_i)&= {} \sum \limits _{i=1,\ldots ,n,y_i=0} \ln \int _{-\infty }^\infty \left\{ \varPhi (-A_i) + \varPhi (A_i) \left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha \right\} \phi (\varepsilon _i)d\varepsilon _i\nonumber \\&\quad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \int _{-\infty }^\infty \left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha \left( \frac{e^{x_i'\beta +\sigma \varepsilon _i}}{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^{y_i} \varPhi (A_i) \phi (\varepsilon _i)d\varepsilon _i \nonumber \\&\quad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \frac{\varGamma (y_i+\alpha )}{\varGamma (\alpha )\varGamma (y_i+1)}. \end{aligned}$$
(25)

1.2 Hurdle Poisson and hurdle negative binomial models with endogenous utilization

For the \(\hbox {HP}_{\mathrm{eu}}\) model, the log-likelihood function for the model is

$$\begin{aligned} \ell (\theta | x_i,z_i)&= {} \sum \limits _{i=1,\ldots ,n,y_i=0} \ln \int _{-\infty }^\infty \varPhi (-A_i) \phi (\varepsilon _i)d\varepsilon _i\nonumber \\&\quad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \int _{-\infty }^\infty \frac{e^{-e^{x_i'\beta +\sigma \varepsilon _i}}e^{(x_i'\beta +\sigma \varepsilon _i)y_i}}{\left( 1-e^{-e^{x_i'\beta +\sigma \varepsilon _i}}\right) y_i!} \varPhi (A_i) \phi (\varepsilon _i)d\varepsilon _i. \end{aligned}$$
(26)

For the \(\hbox {HNB}_{\mathrm{eu}}\) model, the log-likelihood function is

$$\begin{aligned}&\ell (\theta | x_i,z_i)\nonumber \\&\quad = \sum \limits _{i=1,\ldots ,n,y_i=0} \ln \int _{-\infty }^\infty \varPhi (-A_i) \phi (\varepsilon _i)d\varepsilon _i\nonumber \\&\qquad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \int _{-\infty }^\infty \frac{\left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha \left( \frac{e^{x_i'\beta +\sigma \varepsilon _i}}{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^{y_i}}{1- \left( \frac{\alpha }{\alpha +e^{x_i'\beta +\sigma \varepsilon _i}}\right) ^\alpha } \varPhi (A_i) \phi (\varepsilon _i)d\varepsilon _i \nonumber \\&\qquad + \sum \limits _{i=1,\ldots ,n,y_i>0} \ln \frac{\varGamma (y_i+\alpha )}{\varGamma (\alpha )\varGamma (y_i+1)}. \end{aligned}$$
(27)

Appendix 2: Gradients of marginal and incremental effects

The calculation of variance estimates shown in (18), (19), (22), (23) involve the gradients of the marginal and incremental effects. The theoretical formulas of the gradients for our four models are focused on in this section. The corresponding estimates are obtained by substituting the estimate \({\hat{\theta }}\) for the parameter \(\theta\).

1.1 Zero-inflated Poisson and zero-inflated negative binomial models with endogenous utilization

Recall that the observed marginal mean formulas for \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models in (5) sare identical: \(\mathrm{E}(y_i|x_i, z_i) = \int _{-\infty }^\infty e^{x_i'\beta +\sigma \varepsilon _i}\varPhi (A_i)\phi (\varepsilon _i)\,d\varepsilon _i\), and so are their marginal effects and incremental effect formulas. The difference is that the parameters in \({\hbox {ZIP}} _{\mathrm{eu}}\) models are \(\theta =(\beta ',\gamma ',\rho ,\sigma )\), and those in the \(\hbox {ZINB}_{\mathrm{eu}}\) models have an additional component \(\alpha\): \(\theta =(\beta ',\gamma ',\rho ,\sigma ,\alpha )\). The following discussions are the same for both \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models and will not be emphasized again unless indicated otherwise.

For the purpose of notation simplicity, we introduce a pair of smooth functions \(p(t)=e^t\) and \(q(t)=\varPhi (t)\). Then, \({\dot{p}}(t)=\ddot{p}(t)=e^t\) and \({\dot{q}}(t)= \phi (t)\), \(\ddot{q}(t)= -t\phi (t)\), for any \(t\in \mathbb {R}\). The similar pq notations were used in our previous publication (Liu et al. 2018).

Suppose \(x_{ij}=z_{ij}\) is a continuous covariate, then we use the short-hand notations \(p_i, {\dot{p}}_i,\ddot{p}_i, q_i, {\dot{q}}_i,\ddot{q}_i\) when they are evaluated at \(x_i'\beta +\sigma \varepsilon _i\) and \(A_i=\left( {z_i'\gamma +\rho \varepsilon _i}\right) /{\sqrt{1-\rho ^2}}\), respectively. Then, the marginal mean of count outcomes \(y_i\) is \(\mathrm{E}(y_i|x_i, z_i) = \int _{-\infty }^\infty p_iq_i\phi (\varepsilon _i)\,d\varepsilon _i\); the marginal effect with respect to \(x_{ij}\) is

$$\begin{aligned} \eta _j(x_i,z_i,\theta )=\int _{-\infty }^\infty \left( \beta _j{\dot{p}}_iq_i+p_i{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\,d\varepsilon _i, \end{aligned}$$

where \(\frac{\partial A_i}{\partial z_{ij}}={\gamma _{j}}/{\sqrt{1-\rho ^2}}\).

If the case is that \(x_{ij}=z_{ij}\) is categorical, changing from level \(l_1\) to \(l_2\), then we use the notations \(\{p_{2i}, {\dot{p}}_{2i},\ddot{p}_{2i}\}, \{p_{1i}, {\dot{p}}_{1i},\ddot{p}_{1i}\}, \{q_{2i}, {\dot{q}}_{2i},\ddot{q}_{2i}\}, \{q_{1i}, {\dot{q}}_{1i},\ddot{q}_{1i}\}\) for pq and their derivatives evaluated at \({\tilde{x}}_{2i}'\beta +\sigma \varepsilon _i\), \({\tilde{x}}_{1i}'\beta +\sigma \varepsilon _i\), \(A_{2i}=\left( {{\tilde{z}}_{2i}'\gamma +\rho \varepsilon _i}\right) /{\sqrt{1-\rho ^2}}\) and \(A_{1i}=\left( {{\tilde{z}}_{1i}'\gamma +\rho \varepsilon _i}\right) /{\sqrt{1-\rho ^2}}\), respectively, where \({\tilde{x}}_{2i}\), \({\tilde{x}}_{1i}\), \({\tilde{z}}_{2i}\), \({\tilde{z}}_{1i}\) are the covariate vectors \(x_i\) and \(z_i\) with \(x_{ij}=z_{ij}\) equal to \(l_2\) and \(l_1\), respectively. Thus, the incremental effect of marginal mean with respect to \(x_{ij}=z_{ij}\) is

$$\begin{aligned} \pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( p_{2i}q_{2i}-p_{1i}q_{1i}\right) \phi (\varepsilon _i)\,d\varepsilon _i. \end{aligned}$$

Then, we can find the derivatives of \(\eta _j\) with respect to the parameters \(\theta\):

$$\begin{aligned} \begin{array}{llll} &{}&{}\displaystyle \nabla _\beta \,\eta _j(x_i,z_i,\theta ) = \int _{-\infty }^\infty \left\{ \left( \beta _j\ddot{p}_iq_i+{\dot{p}}_i{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) x_i + {\dot{p}}_iq_i u_{(j+1)} \right\} \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \nabla _\gamma \,\eta _j(x_i,z_i,\theta ) = \int _{-\infty }^\infty \left( \beta _j {\dot{p}}_i{\dot{q}}_i\frac{\partial A_i}{\partial \gamma } + p_i\ddot{q}_i\frac{\partial A_i}{\partial \gamma } \frac{\partial A_i}{\partial z_{ij}} +p_i{\dot{q}}_i \frac{\partial ^2 A_i}{\partial z_{ij}\partial \gamma } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \frac{\partial }{\partial \rho } \,\eta _j(x_i,z_i,\theta ) = \int _{-\infty }^\infty \left( \beta _j {\dot{p}}_i{\dot{q}}_i\frac{\partial A_i}{\partial \rho } + p_i\ddot{q}_i\frac{\partial A_i}{\partial \rho } \frac{\partial A_{ij}}{\partial z_{ij}} +p_i{\dot{q}}_i \frac{\partial ^2 A_i}{\partial z_{ij}\partial \rho } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \frac{\partial }{\partial \sigma } \,\eta _j(x_i,z_i,\theta ) =\int _{-\infty }^\infty \left( \beta _j\ddot{p}_iq_i+{\dot{p}}_i{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\varepsilon _i\,d\varepsilon _i, \end{array} \end{aligned}$$
(28)

where \(u_{(j+1)}\) is the unit vector of length \(J_1\) with 1 in the \((j+1)\)-st component, \(\frac{\partial A_i}{\partial \gamma }={z_{i}}/{\sqrt{1-\rho ^2}}\), \(\frac{\partial ^2 A_i}{\partial z_{ij}\partial \gamma }=v_{(j+1)}/\sqrt{1-\rho ^2}\) (length of the unit vector \(v_{(j+1)}\) is \(J_2\) and its \((j+1)\)-st component is 1), \(\frac{\partial A_i}{\partial \rho }=(\varepsilon _i+z_i'\gamma \rho )/\sqrt{(1-\rho ^2)^3}\), \(\frac{\partial ^2 A_i}{\partial z_{ij}\partial \rho }=\gamma _{j}\rho /\sqrt{(1-\rho ^2)^3}\). The derivatives of \(\pi _j\) with respect to \(\theta\) are

$$\begin{aligned} \begin{array}{llll} &{}&{}\displaystyle \nabla _\beta \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty ( {\dot{p}}_{2i}q_{2i} {\tilde{x}}_{2i}-{\dot{p}}_{1i}q_{1i} {\tilde{x}}_{1i} ) \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \nabla _\gamma \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {p}_{2i}{\dot{q}}_{2i}\frac{\partial A_{2i}}{\partial \gamma } - {p}_{1i}{\dot{q}}_{1i}\frac{\partial A_{1i}}{\partial \gamma } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \frac{\partial }{\partial \rho } \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {p}_{2i}{\dot{q}}_{2i}\frac{\partial A_{2i}}{\partial \rho } - {p}_{1i}{\dot{q}}_{1i}\frac{\partial A_{1i}}{\partial \rho } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\ &{}&{}\displaystyle \frac{\partial }{\partial \sigma } \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {\dot{p}}_{2i}{q}_{2i} - {\dot{p}}_{1i}{q}_{1i} \right) \phi (\varepsilon _i)\varepsilon _i\,d\varepsilon _i, \end{array} \end{aligned}$$
(29)

where \(\frac{\partial A_{2i}}{\partial \gamma }={{\tilde{z}}_{2i}}/{\sqrt{1-\rho ^2}}\), \(\frac{\partial A_{1i}}{\partial \gamma }={{\tilde{z}}_{1i}}/{\sqrt{1-\rho ^2}}\), \(\frac{\partial A_{2i}}{\partial \rho }=(\varepsilon _i+{\tilde{z}}_{2i}'\gamma \rho )/\sqrt{(1-\rho ^2)^3}\), \(\frac{\partial A_{1i}}{\partial \rho }=(\varepsilon _i+{\tilde{z}}_{1i}'\gamma \rho )/\sqrt{(1-\rho ^2)^3}\). For \(\hbox {ZINB}_{\mathrm{eu}}\) models, \(\nabla _\alpha \,\eta _j(x_i,z_i,\theta )=\nabla _\alpha \,\pi _j(x_{i(-j)},z_{i(-j)},\theta ) =0\).

1.2 Hurdle Poisson models with endogenous utilization

For the convenience of computation and notations, we introduce smooth functions \(p^{\mathrm{HP}}(t) =\displaystyle \frac{e^{t+e^t}}{e^{e^t}-1}\) and the same \(q(t)=\varPhi (t)\) for \(\hbox {HP}_{\mathrm{eu}}\) models as used for the \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models. Then

$$\begin{aligned} p^\mathrm{HP}(t) = e^t +\kappa (t),\quad {\dot{p}}^\mathrm{HP}(t) = e^t +{\dot{\kappa }}(t),\quad \ddot{p}^\mathrm{HP}(t) = e^t +\ddot{\kappa }(t), \end{aligned}$$

where \(\kappa (t)=\frac{e^t}{e^{e^t}-1}\), \({\dot{\kappa }}(t)=\kappa (t)\{1-e^t-\kappa (t)\}\), \(\ddot{\kappa }(t)={\dot{\kappa }}(t)\{1-e^t-2\kappa (t)\} -e^t\kappa (t)\). Then, for \(p^\mathrm{HP}\) and q, we use the similar notations \(p^\mathrm{HP}_i,q_i,p^\mathrm{HP}_{2i}, q_{2i}, p^\mathrm{HP}_{1i}, q_{1i}\) and their derivatives when evaluated at \(x_i'\beta +\sigma \varepsilon _i\) and \(A_i=\left( {z_i'\gamma +\rho \varepsilon _i}\right) /{\sqrt{1-\rho ^2}}\) and when \(x_{ij}\) takes the values \(l_2\) or \(l_1\) for the i-th observation, as we have done for the \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models. Therefore, the marginal mean of \(\hbox {HP}_{\mathrm{eu}}\) model in (10) can be rewritten as \(\mathrm{E}(y_i|x_i,z_i)= \int _{-\infty }^\infty p_i^\mathrm{HP}q_i\,\phi (\varepsilon _i)\,d\varepsilon _i\). Consequently, the marginal effect is

$$\begin{aligned} \eta _j(x_i,z_i,\theta )=\int _{-\infty }^\infty \left( \beta _j{\dot{p}}_i^\mathrm{HP}q_i+p_i^\mathrm{HP}{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\,d\varepsilon _i, \end{aligned}$$

and the incremental effect with respect to categorical \(x_{ij}=z_{ij}\) from \(l_1\) to \(l_2\) is

$$\begin{aligned} \pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( p_{2i}^\mathrm{HP}q_{2i}-p_{1i}^\mathrm{HP}q_{1i}\right) \phi (\varepsilon _i)\,d\varepsilon _i, \end{aligned}$$

where \(\theta =(\beta ',\gamma ',\rho , \sigma )\). The remaining lines for the derivatives of \(\eta _j\) and \(\pi _j\) with respect to \(\theta\) have the same forms as (28), (29) in the \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models, with p and its derivatives replaced with \(p^{\mathrm{HP}}\) and its derivatives.

1.3 Hurdle negative binomial models with endogenous utilization

For \(\hbox {HNB}_{\mathrm{eu}}\) models, our parameter vector is \(\theta = (\beta ',\gamma ,\rho ,\sigma ,\alpha )\), and our auxiliary functions are \(p^\mathrm{HNB}(t,\alpha ) =\displaystyle \frac{e^t}{1-\delta (t,\alpha )}\), and \(q(t)=\varPhi (t)\), where \(\delta (t,\alpha ) = \tau ^\alpha (t,\alpha )\), \(\tau (t,\alpha ) =\displaystyle \frac{\alpha }{\alpha + e^t}\), and \(\alpha >0\).

It is tedious but not hard to get the partial derivatives of \(p^\mathrm{HNB}\) with respect to t and \(\alpha\). For simplicity of notations, let’s drop the function arguments of \(p^\mathrm{HNB}, \delta ,\tau\). Then,

$$\begin{aligned}&{\dot{p}}^\mathrm{HNB}_t(t,\alpha ) = p^\mathrm{HNB}\left( 1-p^\mathrm{HNB}\delta \tau \right) ,\\&\ddot{p}^\mathrm{HNB}_{tt}(t,\alpha ) ={{\dot{p}}^\mathrm{HNB}_t \left( 1-2p^\mathrm{HNB}\delta \tau \right) + (\alpha + 1)\left( p^\mathrm{HNB}\right) ^2 \delta \tau (1-\tau )},\\&\displaystyle {\dot{p}}^\mathrm{HNB}_\alpha (t,\alpha ) = \frac{p^\mathrm{HNB}\delta (\ln \tau + 1-\tau )}{(1-\delta )},\\&\ddot{p}^\mathrm{HNB}_{t\alpha }(t,\alpha ) =\big \{\displaystyle {\dot{p}}^\mathrm{HNB}_\alpha (1-p^\mathrm{HNB}\delta \tau -p^\mathrm{HNB}\tau )\big \}-\frac{(p^\mathrm{HNB})^2\delta e^t}{(\alpha + e^t)^2}, \end{aligned}$$

where we used \({\dot{\tau }}_t(t,\alpha ) = \tau (\tau -1)\), \(\ddot{\tau }_{tt}(t,\alpha ) = \tau (\tau -1)(2\tau -1)\), \({\dot{\tau }}_\alpha (t,\alpha ) = {e^t}/{(\alpha + e^t)^2}\), \({\dot{\delta }}_t(t,\alpha ) = \alpha \delta (\tau -1) = -e^t\delta \tau\), \(\ddot{\delta }_{tt}(t,\alpha ) = \alpha \delta (\tau -1)\{(\alpha + 1)\tau -\alpha \} = \delta \tau ^2e^t(e^t-1)\), \({\dot{\delta }}_\alpha (t,\alpha ) = \delta (\ln \tau + 1-\tau )\).

At the i-th observation, the function \(p^\mathrm{HNB}\) and its partial derivatives evaluated at \((x_i'\beta +\sigma \varepsilon _i,\alpha )\) are denoted by \(p_i^\mathrm{HNB}, {\dot{p}}_{ti}^\mathrm{HNB}, \ddot{p}_{tti}^\mathrm{HNB}, {\dot{p}}^\mathrm{HNB}_{\alpha i}, \ddot{p}^\mathrm{HNB}_{t\alpha i}\). When the covariate \(x_{ij}\) is fixed at \(l_1\) or \(l_2\), the values of \(p^\mathrm{HNB}, {\dot{p}}_t^\mathrm{HNB}, {\dot{p}}^\mathrm{HNB}_{\alpha }\) are denoted by \(p^\mathrm{HNB}_{2i}, {\dot{p}}_{2ti}^\mathrm{HNB}, {\dot{p}}^\mathrm{HNB}_{2\alpha i}\), and \(p^\mathrm{HNB}_{1i}, {\dot{p}}_{1ti}^\mathrm{HNB}, {\dot{p}}^\mathrm{HNB}_{1\alpha i}\), respectively. Notations \(q_i,{\dot{q}}_i,\ddot{q}_i,q_{2i}, q_{1i},{\dot{q}}_{2i}, {\dot{q}}_{1i}\) for the q function are the same as those in the zero-inflated models and hurdle Poisson models.

Hence, the marginal mean of \(\hbox {HNB}_{\mathrm{eu}}\) model in (12) can be rewritten as \(\mathrm{E}(y_i|x_i,z_i)= \int _{-\infty }^\infty p_i^\mathrm{HNB}q_i\,\phi (\varepsilon _i)\,d\varepsilon _i\), yielding the marginal effect with respect to continuous \(x_{ij}=z_{ij}\), i.e.,

$$\begin{aligned} \eta _j(x_i,z_i,\theta )=\int _{-\infty }^\infty \left( \beta _j{\dot{p}}_{ti}^\mathrm{HNB}q_i+p_i^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\,d\varepsilon _i \end{aligned}$$

and the incremental effect with respect to \(x_{ij}=z_{ij}\) from \(l_1\) to \(l_2\), i.e.,

$$\begin{aligned} \pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( p_{2i}^\mathrm{HNB}q_{2i}-p_{1i}^\mathrm{HNB}q_{1i}\right) \phi (\varepsilon _i)\,d\varepsilon _i. \end{aligned}$$

Then, the derivatives of \(\eta _j\) with respect to the parameter \(\theta\) are

$$\begin{aligned}&\nabla _\beta \,\eta _j(x_i,z_i,\theta ) \\&\quad =\int _{-\infty }^\infty \left\{ \left( \beta _j\ddot{p}_{tti}^\mathrm{HNB}q_i+{\dot{p}}_{ti}^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) x_i + {\dot{p}}_{ti}^\mathrm{HNB}q_i u_{(j+1)} \right\} \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \nabla _\gamma \,\eta _j(x_i,z_i,\theta ) = \int _{-\infty }^\infty \left( \beta _j {\dot{p}}_{ti}^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial \gamma } + p_i^\mathrm{HNB}\ddot{q}_i\frac{\partial A_i}{\partial \gamma } \frac{\partial A_i}{\partial z_{ij}} +p^\mathrm{HNB}_i{\dot{q}}_i \frac{\partial ^2 A_i}{\partial z_{ij}\partial \gamma } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \rho } \,\eta _j(x_i,z_i,\theta ) = \int _{-\infty }^\infty \left( \beta _j {\dot{p}}_{ti}^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial \rho } + p_i^\mathrm{HNB}\ddot{q}_i\frac{\partial A_i}{\partial \rho } \frac{\partial A_{ij}}{\partial z_{ij}} +p_i^\mathrm{HNB}{\dot{q}}_i \frac{\partial ^2 A_i}{\partial z_{ij}\partial \rho } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \sigma } \,\eta _j(x_i,z_i,\theta ) =\int _{-\infty }^\infty \left( \beta _j\ddot{p}_{tti}^\mathrm{HNB}q_i+{\dot{p}}_{ti}^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\varepsilon _i\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \alpha } \,\eta _j(x_i,z_i,\theta ) =\int _{-\infty }^\infty \left( \beta _j\ddot{p}_{t\alpha i}^\mathrm{HNB}q_i+{\dot{p}}_{\alpha i}^\mathrm{HNB}{\dot{q}}_i\frac{\partial A_i}{\partial z_{ij}}\right) \phi (\varepsilon _i)\,d\varepsilon _i, \end{aligned}$$

where \(u_{(j+1)}\) is the unit vector of length \(J_1\). The derivatives of \(\pi _j\) with respect to \(\theta\) are

$$\begin{aligned}&\nabla _\beta \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty ( {\dot{p}}_{2ti}^\mathrm{HNB}q_{2i} {\tilde{x}}_{2i}-{\dot{p}}_{1ti}^\mathrm{HNB}q_{1i} {\tilde{x}}_{1i} ) \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \nabla _\gamma \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {p}_{2i}^\mathrm{HNB}{\dot{q}}_{2i}\frac{\partial A_{2i}}{\partial \gamma } - {p}_{1i}^\mathrm{HNB}{\dot{q}}_{1i}\frac{\partial A_{1i}}{\partial \gamma } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \rho } \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {p}_{2i}^\mathrm{HNB}{\dot{q}}_{2i}\frac{\partial A_{2i}}{\partial \rho } - {p}_{1i}^\mathrm{HNB}{\dot{q}}_{1i}\frac{\partial A_{1i}}{\partial \rho } \right) \phi (\varepsilon _i)\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \sigma } \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {\dot{p}}_{2ti}^\mathrm{HNB}{q}_{2i} - {\dot{p}}_{1ti}^\mathrm{HNB}{q}_{1i} \right) \phi (\varepsilon _i)\varepsilon _i\,d\varepsilon _i,\\&\qquad \frac{\partial }{\partial \alpha } \,\pi _j(x_{i(-j)},z_{i(-j)},\theta )=\int _{-\infty }^\infty \left( {\dot{p}}_{2\alpha i}^\mathrm{HNB}{q}_{2i} - {\dot{p}}_{1\alpha i}^\mathrm{HNB}{q}_{1i} \right) \phi (\varepsilon _i)\,d\varepsilon _i, \end{aligned}$$

where \({\tilde{x}}_{2i},{\tilde{x}}_{1i}\), \({\tilde{z}}_{2i},{\tilde{z}}_{1i}\) are the covariate vectors \(x_i\) and \(z_i\) with \(x_{ij}=z_{ij}\) being equal to \(l_2\) and \(l_1\), respectively. Formulas of derivatives of \(A_i,A_{2i},A_{1i}\) are the same as those for the \({\hbox {ZIP}} _{\mathrm{eu}}\) and \(\hbox {ZINB}_{\mathrm{eu}}\) models.

Appendix 3: Box plots of the parameter estimates in the simulation study

The box plots of parameter estimates of the four models with endogenous utilization are given in Fig. 1.

Fig. 1
figure 1

The box plots of parameter estimates of the four models in the simulation study. The black horizontal line is the true value

Appendix 4: Parameter estimates of the empirical study

This section presents the three tables that summarize the parameter estimates of the two-part models with endogenous utilization in Table (4) and without endogeneity in Table (5) and the estimates of average marginal effect and average incremental effect for the latter (Table 6) for the GSOEP data.

Table 4 Parameter estimates (SEs) given by the four two-part models with endogeneity from fitting to the GSOEP data.
Table 5 Parameter estimates (SEs) given by the four standard two-part models with no endogenous utilization from fitting to the GSOEP data.
Table 6 Estimates (and SEs, p values) of average marginal effect with respect to “hhincome”, average incremental effect with respect to “public” and “addon”, the AIC, BIC of the four standard two-part models with no endogenous utilization from fitting to the GSOEP data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, W., Chen, T. et al. Marginal effects and incremental effects in two-part models for endogenous healthcare utilization in health services research. Health Serv Outcomes Res Method 20, 111–139 (2020). https://doi.org/10.1007/s10742-020-00211-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10742-020-00211-x

Keywords

Navigation