Skip to main content

Advertisement

Log in

Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A total of 74 samples of soil, sediment, industrial sludge, and surface water were collected in a Mediterranean estuarine system in order to assess the potential ecological impact of elevated concentrations of Co and Mn associated with a Terephthalic (PTA) and Isophthalic (PIPA) acids production plant. Samples were analyzed for elemental composition (37 elements), pH, redox potential, organic carbon, and CaCO3 content, and a group of 16 selected samples were additionally subjected to a Tessier sequential extraction. Co and Mn soil concentrations were significantly higher inside the industrial facility and around its perimeter than in background samples, and maximum dissolved Co and Mn concentrations were found in a creek near the plant’s discharge point, reaching values 17,700 and 156 times higher than their respective background concentrations. The ecological risk was evaluated as a function of Co and Mn fractionation and bioavailability which were controlled by the environmental conditions generated by the advance of seawater into the estuarine system during high tide. Co appeared to precipitate near the river mouth due to the pH increase produced by the influence of seawater intrusion, reaching hazardous concentrations in sediments. In terms of their bioavailability and the corresponding risk assessment code, both Co and Mn present sediment concentrations that result in medium to high ecological risk whereas water concentrations of both elements reach values that more than double their corresponding Secondary Acute Values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar Ruiz, J., Galán Huertos, E., & Gómez Ariza, J. L. (2005). Estudio de Elementos Traza en Suelos de Andalucía. http://www.juntadeandalucia.es.

  • Alloway, B. (2013). Heavy metals in soils: Trace metals and metalloids in soil and their bioaviability (3rd ed.). Dordrecht: Springer.

    Book  Google Scholar 

  • ATSDR. (2004). Toxicological Profile for Cobalt. http://www.atsdr.cdc.gov/toxprofiles/tp33.pdf.

  • ATSDR. (2012). Toxicological Profile for Manganese. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=102&tid=23.

  • Aziz, H. A., & Smith, P. G. (1992). The influence of pH and coarse media on manganese precipitation from water. Water Research, 26(6), 853–855. doi:10.1016/0043-1354(92)90017-X.

    Article  CAS  Google Scholar 

  • Barałkiewicz, D., & Siepak, J. (1999). Chromium, nickel and cobalt in environmental samples and existing legal norms. Polish Journal of Environmental Studies, 8(4), 201–208.

    Google Scholar 

  • Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., et al. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience, 51(8), 633–641.

    Article  Google Scholar 

  • Chai, M., Shi, F., Li, R., & Shen, X. (2014). Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Marine Pollution Bulletin, 84(1–2), 115–124. doi:10.1016/j.marpolbul.2014.05.028.

    Article  CAS  Google Scholar 

  • Clark, S. J., Donaldson, J. D., & Khan, Z. I. (1996). Heavy metals in the environment. Part VI: Recovery of cobalt values from spent cobalt/manganese bromide oxidation catalysts. Hydrometallurgy, 40(3), 381–392. doi:10.1016/0304-386X(95)00007-4.

    Article  CAS  Google Scholar 

  • Dassenakis, M., Scoullos, M., & Gaitis, A. (1997). Trace metals transport and behaviour in the Mediterranean estuary of Acheloos River. Marine Pollution Bulletin, 34(2), 103–111. doi:10.1016/S0025-326X(96)00062-8.

    Article  CAS  Google Scholar 

  • De Miguel, E., Callaba, A., Arranz, J. C., Cala, V., Chacón, E., Gallego, E., et al. (2002). Determinación de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en suelos de la Comunidad de Madrid. Medio ambiente. Terrenos contaminados no 2.

  • De Miguel, E., Llamas, J., & Chacon, E. (1997). Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Pergamon Atmospheric Environment, 31(17), 2733–2740.

    Article  Google Scholar 

  • De Miguel, E., Llamas, J. F., Chacón, E., & Mazadiego, L. F. (1999). Sources and pathways of trace elements in urban environments: A multi-elemental qualitative approach. Science of the Total Environment, 235(1–3), 355–357. doi:10.1016/S0048-9697(99)00234-X.

    Article  Google Scholar 

  • Diop, C., Dewaelé, D., Diop, M., Touré, A., Cabral, M., Cazier, F., et al. (2014). Assessment of contamination, distribution and chemical speciation of trace metals in water column in the Dakar coast and the Saint Louis estuary from Senegal, West Africa. Marine Pollution Bulletin, 86(1–2), 539–546. doi:10.1016/j.marpolbul.2014.06.051.

    Article  CAS  Google Scholar 

  • Edgar, G. J., Barrett, N. S., Graddon, D. J., & Last, P. R. (2000). The conservation significance of estuaries: A classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biological Conservation, 92, 383–397.

    Article  Google Scholar 

  • Elsdon, T. S., De Bruin, M. B. N. A., Diepen, N. J., & Gillanders, B. M. (2009). Extensive drought negates human influence on nutrients and water quality in estuaries. Science of the Total Environment, 407(8), 3033–3043. doi:10.1016/j.scitotenv.2009.01.012.

    Article  CAS  Google Scholar 

  • Gerber, G. B., Léonard, A., & Hantson, P. (2002). Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Critical Reviews in Oncology/Hematology, 42(1), 25–34. doi:10.1016/S1040-8428(01)00178-0.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30(10–11), 1389–1414. doi:10.1016/S0038-0717(97)00270-8.

    Article  CAS  Google Scholar 

  • Gladney, E. S. (1980). Compilation of elemental concentration data for the United States Geological Survey’s six geochemical exploration reference materials.

  • Hu, B., Cui, R., Li, J., Wei, H., Zhao, J., Bai, F., et al. (2013). Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island). Marine Pollution Bulletin, 76(1–2), 400–405. doi:10.1016/j.marpolbul.2013.08.020.

    Article  CAS  Google Scholar 

  • IPCS. (2015). International Chemical Safety Card 0500. http://www.inchem.org/documents/icsc/icsc/eics0500.htm.

  • Junta de Andalucía. (1999). Los criterios para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación. Tecnical Report. Consejería de Medioambiente.

  • Junta de Andalucía. (2015). Regiones climáticas de Andalucía. http://www.juntadeandalucia.es. Accessed 8 May 2015.

  • Magesh, N. S., Chandrasekar, N., & Vetha Roy, D. (2011). Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuarine, Coastal and Shelf Science, 92(4), 618–628. doi:10.1016/j.ecss.2011.03.001.

    Article  CAS  Google Scholar 

  • Martínez, M. L., Intralawan, A., Vázquez, G., Pérez-Maqueo, O., Sutton, P., & Landgrave, R. (2007). The coasts of our world: Ecological, economic and social importance. Ecological Economics, 63(2–3), 254–272. doi:10.1016/j.ecolecon.2006.10.022.

    Article  Google Scholar 

  • Milenkovic, N., Damjanovic, M., & Ristic, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14(6), 781–787.

    CAS  Google Scholar 

  • Palpandi, C., & Kesavan, K. (2012). Heavy metal monitoring using Nerita Crepidularia-Mangrove Mollusc from the Vellar Estuary, Southeast Coast of India, pp. 358–367.

  • Peng, J.-F. F., Song, Y.-H. H., Yuan, P., Cui, X.-Y. Y., & Qiu, G.-L. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640. doi:10.1016/j.jhazmat.2008.04.061.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, L., Cirillo, R., Dotta, L., & Orio, A. A. (1985). Heavy metal speciation in the sediments of Northern Adriatic Sea. A new approach for environmental toxicity determination. In Heavy metals in the environment (pp. 454–456).

  • Puertos del Estado. (2013). REDMAR : Red de Mareógrafos de puertos del estado (Informe Anual 2013). http://www.redmar.es/.

  • Spencer, K. L., & MacLeod, C. L. (2002). Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards. Hydrology and Earth System Sciences, 6(6), 989–998. doi:10.5194/hess-6-989-2002.

    Article  Google Scholar 

  • Statham, P. J. (2012). Nutrients in estuaries: An overview and the potential impacts of climate change. Science of the Total Environment, 434, 213–227. doi:10.1016/j.scitotenv.2011.09.088.

    Article  CAS  Google Scholar 

  • Sun, J., Wang, M.-H. H., & Ho, Y.-S. S. (2012). A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin, 64(1), 13–21. doi:10.1016/j.marpolbul.2011.10.034.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186(2–3), 1837–1846. doi:10.1016/j.jhazmat.2010.12.081.

    Article  CAS  Google Scholar 

  • Suter, G. W., & Tsao, C. L. (1996). Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. Tennessee.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Turner, A., Millward, G. E., & Le Roux, S. M. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88(3–4), 179–192. doi:10.1016/j.marchem.2004.03.008.

    Article  CAS  Google Scholar 

  • Turner, A., Nimmo, M., & Thuresson, K. A. (1998). Speciation and sorptive behaviour of nickel in an organic-rich estuary (Beaulieu, UK). Marine Chemistry, 63(1–2), 105–118. doi:10.1016/S0304-4203(98)00054-1.

    Article  CAS  Google Scholar 

  • University of Tennessee. (2016). The Risk Assessment Information System (RAIS). http://rais.ornl.gov/. Accessed 19 May 2016.

  • USEPA. (1997). Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments—Interim Final. http://www.epa.gov/oswer/riskassessment/ecorisk/ecorisk.htm.

  • USEPA. (2015). Integrated Risk Information System (IRIS). http://www.epa.gov/iris/.

  • Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science and Technology, 5(2), 179–182. doi:10.1007/BF03326011.

    Article  CAS  Google Scholar 

  • Wang, J., Liu, R., Zhang, P., Yu, W., Shen, Z., & Feng, C. (2014). Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary. Marine Pollution Bulletin, 87(1–2), 364–373. doi:10.1016/j.marpolbul.2014.07.048.

    Article  CAS  Google Scholar 

  • Wetz, M. S., & Yoskowitz, D. W. (2013). An “extreme” future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Marine Pollution Bulletin, 69(1–2), 7–18. doi:10.1016/j.marpolbul.2013.01.020.

    Article  CAS  Google Scholar 

  • Wu, G., Shang, J., Pan, L., & Wang, Z. (2014). Heavy metals in surface sediments from nine estuaries along the coast of Bohai Bay, Northern China. Marine Pollution Bulletin, 82(1–2), 194–200. doi:10.1016/j.marpolbul.2014.02.033.

    Article  CAS  Google Scholar 

  • Yoshizawa, H., & Ohzuku, T. (2007). An application of lithium cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries. Journal of Power Sources, 174(2), 813–817. doi:10.1016/j.jpowsour.2007.06.153.

    Article  CAS  Google Scholar 

  • Zhuang, W., & Gao, X. (2014). Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: Inconsistency between two commonly used criteria. Marine Pollution Bulletin, 83(1), 352–357. doi:10.1016/j.marpolbul.2014.03.039.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded through the CARESOIL–CM (S2013/MAE-2739) research grant of the Regional Government of Madrid (Comunidad de Madrid, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Barrio-Parra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio-Parra, F., Elío, J., De Miguel, E. et al. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system. Environ Geochem Health 40, 737–748 (2018). https://doi.org/10.1007/s10653-017-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0020-9

Keywords

Navigation