Skip to main content

Modelling Aspects for Adaptation of Alternative Fuels in IC Engines

  • Chapter
  • First Online:
Simulations and Optical Diagnostics for Internal Combustion Engines

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Deteriorating environment and stricter emission norms are motivating researchers for finding sustainable transport solutions. Researchers are focusing on two approaches namely adaptation of alternative fuels, and exhaust gas after-treatment. Utilization of alternate fuels such as methanol, ethanol, and biodiesel etc. in internal combustion (IC) engines reduces inherent chemical components present in conventional fossil fuels. These chemical species are a major source of harmful pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), PM bound trace metals, etc. Advancement in after-treatment technologies such as optimization of hexagonal cells of substrate, use of noble metals, etc. are also effective in reducing pollutants from engine tail-pipe. However, developments for adaptation of these technologies in existing engines is a challenging task. For adaptation of any alternative fuel, engine components need to be modified according to fuel properties. However, optimization of design parameters of thousands of engine components is a tedious task, which cannot be done experimentally. This can be done easily using modelling techniques, in which a prototype engine can be developed to investigate the effect of engine design parameters and fuel properties on the engine performance and emission characteristics. In last few years, 1-D and 3-D simulation tools have been extensively explored for engine design and performance optimization. This chapter discusses basic modelling techniques, which can be used for engine research. This chapter also presents heat transfer models, which are important for in-cylinder combustion analysis. Few fluid-flow models have also been discussed in this chapter, which are mainly used for in-cylinder air-flow investigations, fuel flow in the fuel injection system, etc. Overall, this chapter discusses modelling aspects related to engine design so that alternative fuels can be adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kumar Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valera, H., Kumar, D., Singh, A.P., Agarwal, A.K. (2020). Modelling Aspects for Adaptation of Alternative Fuels in IC Engines. In: Singh, A., Shukla, P., Hwang, J., Agarwal, A. (eds) Simulations and Optical Diagnostics for Internal Combustion Engines. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0335-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0335-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0334-4

  • Online ISBN: 978-981-15-0335-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics