Skip to main content

Abstract

Methanol is one of the most important intermediates in the chemical industry. The applications of methanol are versatile, ranging from feedstock for the production of specialty chemicals, polymers, and pharmaceuticals to energy applications such as the production of fuel additives or direct fuel blending. Considering a market price of approximately $450 per ton, methanol compares well with other liquid fuels, based on the costs per energy content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J.A. Tijm, F.J. Waller, D.M. Brown, Methanol technology developments for the new millennium. Appl. Cat. A 221, 275–282 (2001)

    Article  Google Scholar 

  2. Methanol plants keep getting bigger, Nitrogen + Syngas 316, March-April 2012, pp. 50–61

    Google Scholar 

  3. L. Connock; Grand designs, N + S 297, Jan–Feb 2009, pp. 40–55

    Google Scholar 

  4. R. Esquivel, Coal to methanol design report. San Diego, 2008, http://maecourses.uscd.edu/eng124/rpts/gp1_final.pdf

  5. I. Wender, Reactions of synthesis gas. Fuel Process. Technol. 48, 189–297 (1996)

    Article  Google Scholar 

  6. P.L. Spath, D.C. Dayton, Preliminary screening—Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, Technical Report, 2003, NREL/TP-510-34929

    Google Scholar 

  7. M.V. Twigga, M.S. Spencer, Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Topics Catal. 22(3–4), 191 (2003)

    Article  Google Scholar 

  8. W. Hilsebein, J. Blaurock, Constructing a MegaMethanol® plant, Start to Finish, Houston, 14 October 2004

    Google Scholar 

  9. Nexant’s ChemSystems PERP Report 07/08-2, Methanol, November 2008

    Google Scholar 

  10. Saudi Ministry of Petroleum

    Google Scholar 

  11. E. Schwarz, BASF SE, Coal to chemicals. Fachgespräch Kohle, BMBF, Berlin 18.11.2011

    Google Scholar 

  12. D. Johnson, Global methanol market review June 2012, IHS Inc http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf

  13. J. Wagner, Lurgi’s MegaMethanol technology—most economical and reliable technology for the new generation of methanol plants, presentation at Süd-Chemie’s conference, Bahrain, 1st June 2004

    Google Scholar 

  14. Cancun Agreements to the United Nations Framework Convention on Climate Change, United Nations, Cancun, 2010

    Google Scholar 

  15. Kyoto Protocol to the United Nations Framework Convention on Climate Change, United Nations, Kyoto, 1997

    Google Scholar 

  16. EU action against climate change; Leading global action to 2020 and beyond, Eurpean Commision, 2009

    Google Scholar 

  17. How much bioenergy can Europe produce without harming the environment? EEA Report No 7/2006. European Environment Agency, Copenhagen, 2006

    Google Scholar 

  18. IEA, Key world energy statistics 2009, http://www.iea.org/statistics/

  19. A.P.C. Faaij, Bio-energy in Europe: changing technology choices. Energy Pol. 34, 322–342 (2006)

    Article  Google Scholar 

  20. A. Bandi, M. Specht, Gewinnung von Methanol aus Biomasse, ZSW-Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 2004, Stuttgart

    Google Scholar 

  21. K. Wagemann, Roadmap biorerfineries, German Federal Government 2012

    Google Scholar 

  22. F. Asinger, Methanol—Chemie—und Energierohstoff (Springer, Heidelberg, 1986)

    Book  Google Scholar 

  23. G. Olah, Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005)

    Article  Google Scholar 

  24. Pilot Project investigates new methanol synthesis route Mitsui chemicals; Chemical ICO2 Immobilistion project. Report in www.HydrocarbonProcessing.com

  25. K. Tran, O.F. Sigurbjornsson, That’s why we should all go to Iceland. Tce 840, 28–31 (2011)

    Google Scholar 

  26. T. Smolinka, M. Günther, J. Garche, NOW-Studie “Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien” Kurzfassung des Abschlussberichts, Fraunhofer ISE, FCBAT 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludolf Plass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blug, M., Leker, J., Plass, L., Günther, A. (2014). Methanol Generation Economics. In: Bertau, M., Offermanns, H., Plass, L., Schmidt, F., Wernicke, HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39709-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39709-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39708-0

  • Online ISBN: 978-3-642-39709-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics