Skip to main content

Fundamentals of Organic Lasers

  • Chapter
  • First Online:
Organic Solid-State Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 175))

Abstract

In this chapter the main characteristics and specificities of organic solid-state lasers are presented. We particularly highlight these aspects which are important for organic lasers and specific to them, and which are therefore not usually treated in classical textbooks on lasers. The objective of this chapter is to present a quite general, while not exhaustive, overview of the photophysics of organic compounds that are directly useful to understand the physics of organic lasers, as well as a theoretical framework suited to the description of these lasers in most practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although this low absorption cross section is also associated to a low emission cross section (and hence a low gain), this does not mean that crystalline gain media doped with rare-earth ions would be “worse” than organics or semiconductors to make a good laser material, because the metastability of the excited state also means that Nd, Yb or Er ions have a very long lifetime (~ms), enabling a good energy storage capability. For this reason population inversion is easy to reach in rare-earth ions, even in three-level (Er) or quasi-2 level (Yb) configurations.

  2. 2.

    “Classically, the Franck–Condon principle is the approximation that an electronic transition is most likely to occur without changes in the positions of the nuclei in the molecular entity and its environment. The resulting state is called a Franck–Condon state, and the transition involved, a vertical transition. The quantum mechanical formulation of this principle is that the intensity of a vibronic transition is proportional to the square of the overlap integral between the vibrational wavefunctions of the two states that are involved in the transition”—IUPAC Compendium of Chemical Terminology, 2nd Edition (1997).

  3. 3.

    There is a small energy difference between the three triplet substates because of their different ms quantum numbers, called the Zero Field Splitting (because it exists even in absence of an applied magnetic field) due to spin–spin interactions, however it is very low (from a few µeV to a few meV in metal–ligand charge transfer complexes) and is hence only detectable at cryogenic temperatures.

  4. 4.

    The word exciton usually describes any mobile excited state, i.e. it is applicable whenever the excitation is able to travel or diffuse—to a nearby molecule for instance in the case of a molecular solid. The concept associated with the “exciton binding energy” is still valid for an oligomer or a dye dispersed in a non-conjugated matrix, although it may just be called the coulomb interaction in this case. Note also that the exciton binding energy in the case of an OSC carries more physical insight when it is defined with respect to the transport gap, as this becomes equal to the energy required to break the exciton into a pair of separated charges; in a dye-doped polymer the Coulomb energy can be expressed directly with respect to the HOMO–LUMO gap.

References

  1. W. Holzer et al., Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV. Synth. Met. 140(2–3), 155–170 (2004)

    Article  Google Scholar 

  2. J.C. Ribierre et al., Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91(081108) (2007)

    Google Scholar 

  3. E. Ishow et al., Multicolor emission of small molecule-based amorphous thin films and nanoparticles with a single excitation wavelength. Chem. Mater. 20(21), 6597–6599 (2008)

    Article  Google Scholar 

  4. C.H. Kim et al., Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110(9), 093722 (2011)

    Article  ADS  Google Scholar 

  5. V. Coropceanu et al., Hole- and electron-vibrational couplings in Oligoacene crystals: intramolecular contributions. Phys. Rev. Lett. 89(27), 275503 (2002)

    Article  ADS  Google Scholar 

  6. M. Malagoli, J.L. Bredas, Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 327(1–2), 13–17 (2000)

    Article  ADS  Google Scholar 

  7. V. Coropceanu et al., Charge transport in organic semiconductors. Chem. Rev. 107(4), 926 (2007)

    Article  Google Scholar 

  8. Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107(4), 953 (2007)

    Article  Google Scholar 

  9. A. Moliton, Optoelectronics of molecules and polymers (Springer, New York, 2005)

    Google Scholar 

  10. P.M. Borsenberger, L. Pautmeier, H. Bassler, Charge transport in disordered molecular solids. J. Chem. Phys. 94(8), 5447–5454 (1991)

    Article  ADS  Google Scholar 

  11. I.I. Fishchuk et al., Nondispersive polaron transport in disordered organic solids. Phys. Rev. B 67(22), 224303 (2003)

    Article  ADS  Google Scholar 

  12. L. Li, H. Kosina, Charge transport in organic semiconductor devices, in Organic Electronics, ed. by T. Grasser, G. Meller (Springer, Berlin, 2010), p. 301

    Google Scholar 

  13. S. Moller, G. Weiser, C. Lapersonne-Meyer, Excitonic photoconductivity of 4BCMU polydiacetylene single crystals. Synth. Met. 116(1–3), 23–26 (2001)

    Article  Google Scholar 

  14. S.F. Alvarado et al., Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81(5), 1082–1085 (1998)

    Article  ADS  Google Scholar 

  15. P.P. Sorokin, R. Lankard, Stimulated emission observed from an organic dye, chloro-aluminium phtalocyanine. IBM J. Res. Develop 10, 162–163 (1966)

    Article  Google Scholar 

  16. F.P. Schafer (ed.), Dye Lasers. Topics in Applied Physics, vol. 3, ed. by F.P. Schafer (Springer, Berlin, 1973), p. 285

    Google Scholar 

  17. R. Bornemann, U. Lemmer, E. Thiel, Continuous-wave solid-state dye laser. Opt. Lett. 31(11), 1669 (2006)

    Article  ADS  Google Scholar 

  18. S. Chénais, S. Forget, Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)

    Article  Google Scholar 

  19. C.H.J. Wells, Introduction to Molecular Photochemistry. Chapman and Hall Chemistry Textbook Series (Chapman and Hall, New York, 1972)

    Google Scholar 

  20. J.M. Holt, Ultrafast Optical Measurements of Charge Generation and Transfer Mechanisms of Pi-conjugated Polymers for Solar Cell Applications, University of Utah, 2009

    Google Scholar 

  21. P. Chaquin, F. Fuster, Orbimol Laboratoire de Chimie Théorique, (UPMC Univ Paris 6, UMR CNRS 7616, Paris, 2012), http://www.lct.jussieu.fr/pagesperso/orbimol/

  22. H.A.M. van Mullekom et al., Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Reports 32(1), 1–40 (2001)

    Article  Google Scholar 

  23. J. Roncali, Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28(17), 1761–1775 (2007)

    Article  Google Scholar 

  24. C.A. Coulson, Excited electronic levels in conjugated molecules: I. Long wavelength ultra-violet absorption of naphthalene, anthracene and homologs. Proc. Phys. Soc. 60(3), 257 (1948)

    Google Scholar 

  25. T.H. Fay, S.D. Graham, Coupled spring equations. Int. J. Math. Educ. Sci. Technol. 34(1), 65–79 (2003)

    Article  Google Scholar 

  26. A.C. Tropper et al., Vertical-external-cavity semiconductor lasers. J. Phys. D Appl. Phys. 37(9), R75 (2004)

    Article  ADS  Google Scholar 

  27. S. Jasprit, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2007), p. 560

    Google Scholar 

  28. G.G. Malliaras et al., Nondispersive electron transport in Alq[sub 3]. Appl. Phys. Lett. 79(16), 2582 (2001)

    Article  ADS  Google Scholar 

  29. T. Susdorf et al., Photophysical characterisation of some dipyrromethene dyes in ethyl acetate and covalently bound to poly(methyl methacrylate). Chem. Phys. 312(1–3), 151–158 (2005)

    Article  ADS  Google Scholar 

  30. I. Gozhyk et al., Polarization properties of solid-state organic lasers. Phys. Rev. A 86(4), 043817 (2012)

    Article  ADS  Google Scholar 

  31. I. Gozhyk et al., Towards polarization controlled organic micro-lasers. in Photonics West (SPIE, San Francisco, 2012)

    Google Scholar 

  32. B. Valeur, Molecular Fluorescence (Wiley-VCH, Weinheim, 2001)

    Google Scholar 

  33. H.-W. Lin et al., Tuning stimulated emission of organic thin films by molecular reorientation. Appl. Phys. Lett. 87(7), 071910–071913 (2005)

    Article  ADS  Google Scholar 

  34. F.J. Duarte, Tunable Laser Applications, 2nd edn. (CRC Press, New York, 2009)

    Google Scholar 

  35. M. Goossens et al., Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Appl. Phys. Lett. 85(1), 31 (2004)

    Article  ADS  Google Scholar 

  36. P. Atkins, J.D. Paula, Physical Chemistry (Oxford University Press, New York, 2006)

    Google Scholar 

  37. M. Fox, Optical Properties of Solids. (Oxford Master Series in Condensed Matter Physics) (Oxford University Press, New York, 2002)

    Google Scholar 

  38. S. Forget et al., Red-emitting fluorescent organic light emitting diodes with low sensitivity to self-quenching. J. Appl. Phys. 108(064509) (2010)

    Google Scholar 

  39. S.J. Strickler, R.A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37(4), 814–822 (1962)

    Article  ADS  Google Scholar 

  40. W. Holzer, A. Penzkofer, T. Tsuboi, Absorption and emission spectroscopic characterization of Ir(ppy)(3). Chem. Phys. 308(1–2), 93–102 (2005)

    Article  ADS  Google Scholar 

  41. M. Reufer, J.M. Lupton, U. Scherf, Stimulated emission depletion of triplet excitons in a phosphorescent organic laser. Appl. Phys. Lett. 89(14), 141111–141113 (2006)

    Article  ADS  Google Scholar 

  42. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)

    Article  ADS  Google Scholar 

  43. M.D. McGehee et al., Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72(13), 1536–1538 (1998)

    Article  ADS  Google Scholar 

  44. S. Chandra et al., Tunable ultraviolet laser source based on solid-state dye laser technology and CsLiB6O10 harmonic generation. Opt. Lett. 22(4), 209 (1997)

    Article  ADS  Google Scholar 

  45. S. Forget et al., Tunable ultraviolet vertically-emitting organic laser. Appl. Phys. Lett. 98(13), 131102 (2011)

    Article  ADS  Google Scholar 

  46. X.H. Yang et al., Highly efficient polymeric electrophosphorescent diodes. Adv. Mater. 18(7), 948 (2006)

    Google Scholar 

  47. Y.F. Pedash et al., Spin-orbit coupling and luminescence characteristics of conjugated organic molecules. I. Polyacenes. J. Mol. Struct. (Thoechem) 585(1), 49–59 (2002)

    Article  Google Scholar 

  48. R.F. Kubin, A.N. Fletcher, The effect of oxygen on the fluorescence quantum yields of some coumarin dyes in ethanol. Chem. Phys. Lett. 99(1), 49–52 (1983)

    Article  ADS  Google Scholar 

  49. G. Tsiminis et al., A two-photon pumped polyfluorene laser. Appl. Phys. Lett. 94(25), 253304 (2009)

    Article  ADS  Google Scholar 

  50. Y. Mo et al., Ultraviolet-emitting conjugated polymer poly(9,9[prime or minute]-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV. Chem. Commun. 39, 4925 (2005)

    Article  Google Scholar 

  51. N. Johansson et al., Solid-state amplified spontaneous emission in some spiro-type molecules: a new concept for the design of solid-state lasing molecules. Adv. Mater. 10(14), 1136 (1998)

    Article  Google Scholar 

  52. T. Spehr et al., Organic solid-state ultraviolet-laser based on spiro-terphenyl. Appl. Phys. Lett. 87(16), 161103 (2005)

    Article  ADS  Google Scholar 

  53. J.V. Caspar, T.J. Meyer, Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87(6), 952–957 (1983)

    Article  Google Scholar 

  54. P. Del Carro et al., Near-infrared imprinted distributed feedback lasers. Appl. Phys. Lett. 89(20), 201105 (2006)

    Article  ADS  Google Scholar 

  55. S. Yuyama et al., Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides. Appl. Phys. Lett. 93(2), 023306 (2008)

    Article  ADS  Google Scholar 

  56. M. Casalboni et al., 1.3 mu m light amplification in dye-doped hybrid sol-gel channel waveguides. Appl. Phys. Lett. 83(3), 416 (2003)

    Article  ADS  Google Scholar 

  57. C. Winder, N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14(7), 1077–1086 (2004)

    Article  Google Scholar 

  58. R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1956)

    Google Scholar 

  59. H. Föll, http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_a/advanced/ta_4_1.html

  60. S.A. Jenekhe, A class of narrow-band-gap semiconducting polymers. Nature 322(6077), 345–347 (1986)

    Article  ADS  Google Scholar 

  61. M.A. Baldo et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)

    Article  ADS  Google Scholar 

  62. M. Lehnhardt et al., Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Phys. Rev. B 81(16), 165206 (2010)

    Article  ADS  Google Scholar 

  63. Y. Zhang, S.R. Forrest, Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84(24), 241301 (2011)

    Article  ADS  Google Scholar 

  64. S. Schols et al., Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10(7), 1071–1076 (2009)

    Article  Google Scholar 

  65. S. Kéna-Cohen et al., Plasmonic sinks for the selective removal of long-lived states. ACS Nano 5(12), 9958–9965 (2011)

    Article  Google Scholar 

  66. M.A. Baldo, R.J. Holmes, S.R. Forrest, Prospects for electrically pumped organic lasers. Phys. Rev. B 66(3), 035321 (2002)

    Article  ADS  Google Scholar 

  67. N.C. Giebink, S.R. Forrest, Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79(073302) (2009)

    Google Scholar 

  68. N.C. Giebink, Y. Sun, S.R. Forrest, Transient analysis of triplet exciton dynamics in amorphous organic semiconductor thin films. Org. Electron. 7(5), 375–386 (2006)

    Article  Google Scholar 

  69. A. Kohler, H. Bassler, Triplet states in organic semiconductors. Mater. Sci. Eng. R Reports 66(4–6), 71–109 (2009)

    Article  Google Scholar 

  70. S.P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, ed.(P.-H. International, Hemel Hempstead, 1969). ISBN: 0135996627

    Google Scholar 

  71. A. Köhler, D. Beljonne, The singlet–triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14(1), 11–18 (2004)

    Article  Google Scholar 

  72. J. Michl, E.W. Thulstrup, Why is azulene blue and anthracene white? A simple mo picture. Tetrahedron 32(2), 205–209 (1976)

    Article  Google Scholar 

  73. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics/Claude Cohen-Tannoudji, Bernard Diu, Franck Laloe; translated from the French by Susan Reid Hemley, Nicole Ostrowsky, Dan Ostrowsky (Wiley, New York, 1977)

    Google Scholar 

  74. X. Yang et al., Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers. Adv. Mater. 21(8), 916–919 (2009)

    Article  Google Scholar 

  75. C. Adachi et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90(10), 5048–5051 (2001)

    Article  ADS  Google Scholar 

  76. S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices, 1st edn. (Springer, Berlin, 2011). ISBN: 9789400716070

    Google Scholar 

  77. J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Google Scholar 

  78. R.M. Clegg, Förster resonance energy transfer—FRET what is it, why do it, and how it’s done, in Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33, ed. by T.W.J. Gadella, (Elsevier, Amsterdam, 2009), pp. 1–57

    Google Scholar 

  79. D.F. Evans, 257. Perturbation of singlet-triplet transitions of aromatic molecules by oxygen under pressure. J. Chem. Soc. (Resumed), 1957, 1351–1357 (1957)

    Google Scholar 

  80. M. Lebental et al., Diffusion of triplet excitons in an operational organic light-emitting diode. Phys. Rev. B 79(165318) (2009)

    Google Scholar 

  81. R.R. Lunt, et al., Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105(053711) (2009)

    Google Scholar 

  82. G. Weber, Dependence of the polarization of the fluorescence on the concentration. Trans. Faraday Soc. 50, 552–555 (1954)

    Article  Google Scholar 

  83. S.Y. Arzhantsev et al., On the singlet–singlet annihilation of the excited states of Rhodamine 3B in a polymer film. Laser Phys. 9(2), 466–469 (1999)

    Google Scholar 

  84. C. Gärtner, Organic Laser Diodes: Modelling and Simulation (Universitätsverlag Karlsruhe, Karlsruhe, 2009)

    Google Scholar 

  85. M.A. Baldo et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)

    Article  ADS  Google Scholar 

  86. E.J.W. List et al., Direct evidence for singlet-triplet exciton annihilation in π-conjugated polymers. Phys. Rev. B 66(23), 235203 (2002)

    Article  ADS  Google Scholar 

  87. M.A. Baldo, C. Adachi, S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Phys. Rev. B. 62(16), 10967–10977 (2000)

    Google Scholar 

  88. A. Siegman, Lasers (University Science Books, Mill Valey, 1986)

    Google Scholar 

  89. M. Koschorreck et al., Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87(181108) (2005)

    Google Scholar 

  90. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-VCH, New York, 1997)

    Google Scholar 

  91. C. Delsart, Lasers & Optique Non Linéaire (Ellipses, Paris, 2008), p. 426

    Google Scholar 

  92. C. Gartner et al., The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101(2), 023107 (2007)

    Article  ADS  Google Scholar 

  93. G. Lanzani et al., Triplet-exciton generation mechanism in a new soluble (Red-Phase) Polydiacetylene. Phys. Rev. Lett. 87(18), 187402 (2001)

    Article  ADS  Google Scholar 

  94. J. Widengren, R. Rigler, Ü. Mets, Triplet-state monitoring by fluorescence correlation spectroscopy. J. Fluoresc. 4(3), 255–258 (1994)

    Article  Google Scholar 

  95. A. Penzkofer, W. Falkenstein, Theoretical investigation of amplified spontaneous emission with picosecond light pulses in dye solutions. Opt. Quant. Electron. 10(5), 399–423 (1978)

    Article  Google Scholar 

  96. C. Gartner et al., The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101(2), 023107–023109 (2007)

    Article  ADS  Google Scholar 

  97. C. Zenz et al., Ultrafast photogeneration mechanisms of triplet states in para-hexaphenyl. Phys. Rev. B 59(22), 14336–14341 (1999)

    Article  ADS  Google Scholar 

  98. H. Rabbani-Haghighi et al., Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser. Opt. Lett. 35(12), 1968–1970 (2010)

    Article  ADS  Google Scholar 

  99. D. Cahen, A. Kahn, E. Umbach, Energetics of molecular interfaces. Mater. Today 8(7), 32–41 (2005)

    Article  Google Scholar 

  100. H.A.M. van Mullekom et al., Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Reports 32(1), 1 (2001)

    Article  Google Scholar 

  101. M.P. Lettinga, H. Zuilhof, M.A.M.J. van Zandvoort, Phosphorescence and fluorescence characterization of fluorescein derivatives immobilized in various polymer matrices. Phys. Chem. Chem. Phys. 2(16), 3697–3707 (2000)

    Article  Google Scholar 

  102. T.G. Pavlopoulos et al., Laser action from syn-(methyl, methyl) bimane. J. Appl. Phys. 60(11), 4028–4030 (1986)

    Article  ADS  Google Scholar 

  103. A. Costela et al., Polymeric matrices for lasing dyes: recent developments. Laser Chem. 18(1–2), 63–84 (1998)

    Article  Google Scholar 

  104. J. Yu et al., Singlet-triplet and triplet–triplet interactions in conjugated polymer single molecules. J. Phys. Chem. B 109(20), 10025–10034 (2005)

    Article  Google Scholar 

  105. M.A. Stevens et al., Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63(16), 165213 (2001)

    Article  ADS  Google Scholar 

  106. E.J.W. List et al., Direct evidence for singlet-triplet exciton annihilation in pi-conjugated polymers. Phys. Rev. B 66(235203) (2002)

    Google Scholar 

  107. G.D. Hale, S.J. Oldenburg, N.J. Halas, Observation of triplet exciton dynamics in conjugated polymer films using two-photon photoelectron spectroscopy. Phys. Rev. B 55(24), R16069–R16071 (1997)

    Article  ADS  Google Scholar 

  108. D. Hertel, K. Meerholz, Triplet-polaron quenching in conjugated polymers. J. Phys. Chem. B 111(42), 12075–12080 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Forget .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forget, S., Chénais, S. (2013). Fundamentals of Organic Lasers. In: Organic Solid-State Lasers. Springer Series in Optical Sciences, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36705-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36705-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36704-5

  • Online ISBN: 978-3-642-36705-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics