Skip to main content

Plants as Monitors of Lead Air Pollution

  • Chapter
  • First Online:
Pollutant Diseases, Remediation and Recycling

Abstract

The most important environmental problems are caused by intensive industrial activities, urbanization and population growth. The increase in air pollution resulting from the expanding use of fossil energy sources and the growth in the manufacture and use of chemicals has been accompanied by mounting public awareness of and concern about detrimental effects on health and the environment. Anthropogenic activities have greatly changed pollutant atmospheric concentrations and consequently, their availability and cycling. Airborne lead (Pb) is a constituent of atmospheric particulate matter (PM), and as such it may be transported to great distances before being removed in deposition processes. Here we review the application of plants in (i) trace elements monitoring, (ii) biomonitoring of lead air pollution and (iii) identifying lead sources in the environment. The instrumental monitoring techniques lack information on impact of atmospheric pollutants on the living systems and hence, there has been an increasing interest in using indirect monitoring methods based on a response of living organisms that may act as trace element bioaccumulators. Since plants accumulate lead, as well as other trace elements, from the atmosphere, the indirect air pollution monitoring, using plants has gained importance in the last decades. Mosses, lichens, but also higher plants have been used for biomonitoring of various pollutants, including lead. Lead isotopic studies may provide a convenient approach for studying and tracing the sources of Pb pollution in different environmental compartments. The lead isotope approach for plant biomonitoring in source identification and biomonitoring species validity assessment has been discussed. It has been shown that airborne Pb is the most important source of accumulated Pb in plants. The overview of advantages using plants for lead air pollution monitoring is presented in this paper, as well as the determination of lead sources in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEI:

Average Exposure Indicator

Ag:

Argentum

Al:

Aluminium

APM:

Airborne particulate matter

As:

Arsenic

Ba:

Barium

BB:

Biesbosch National Park

Be:

Beryllium

BD:

Bulk Deposition

Cd:

Cadmium

Co:

Cobalt

CO:

Carbon Monoxide

Cr:

Chromium

Cu:

Copper

DEFRA:

Department for Environment, Food and Rural Affairs

EC:

European Commission

EEA:

European Environment Agency

ETC/CDS:

European Topic Centre on Catalogue of Data Sources

FAAS:

Flame Atomic Absorption Spectrometry

Fe:

Iron

GEMET:

General Multilingual Environmental Thesaurus

GFAAS:

Graphite Furnace Atomic Absorption Spectrometry

GHGs:

Greenhouse Gases

Hg:

Mercury

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

ICP-OES:

Inductively Coupled Plasma Optical Emission Spectrometry

IUPAC:

International Union of Pure and Applied Chemistry

JRBP:

Jasper Ridge Biological Preserve

MC-ICP-MS:

Magnetic Sector Inductively Coupled Plasma Mass Spectrometry

Mn:

Manganese

NAA:

Neutron Activation Analysis

Ni:

Nickel

NH3 :

Ammonia

NMVOC:

Non-methane Volatile Organic Compound

NO2 :

Nitrogen Dioxide

NOx :

Nitrogen Oxides (nitric oxide and nitrogen dioxide)

O3 :

Ozone

Pb:

Lead

PM:

Particulate Matter

PM2.5 :

Particulate Matter with aerodynamic diameter less than 2.5 μm

PM10 :

Particulate Matter with aerodynamic diameter less than 10 μm

REF:

Reference location

Q-ICP-MS:

Quadrupole Inductively Coupled Plasma Mass Spectrometry

Se:

Selenium

SEM–EDAX:

Scanning Electron Microscopy Combined with Energy Dispersive X-ray Spectroscopy

SO2 :

Sulfur Dioxide

SPM:

Suspended particulate matter

Sr:

Strontium

Th:

Thorium

TIMS:

Thermal Ionization Mass Spectrometry

U:

Uranium

UN:

United Nations

UNEP:

United Nations Environment Programme

US EPA:

United States Environmental Protection Agency

V:

Vanadium

VOC:

Volatile Organic Compound

WHO:

World Health Organization

XRF:

X-ray Fluorescence Analysis

Zn:

Zinc

References

  • Abouchami W, Zabel M (2003) Climate forcing of the Pb isotope record of terrigenous input into the Equatorial Atlantic. Earth Planet Sci Lett 213:221–234. doi:10.1016/S0012-821X(03)00304-2

    CAS  Google Scholar 

  • Ahamed M, Siddiqui M (2007) Environmental lead toxicity and nutritional factors. Clin Nutr 26:400–408. doi:10.1016/j.clnu.2007.03.010

    CAS  Google Scholar 

  • Alcamo J (1992) Transboundary air pollution in Central Europe and Eastern Europe. In: Alcamo J (ed) Coping with crisis in Eastern Europe’s environment. IIASA Book, Parthenon Publishing Group, Carnforth

    Google Scholar 

  • An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35:3551–3556. doi:10.1016/S0043-1354(01)00099-9 doi:10.1016/S0043-1354(01)00099-9#doilink

    Google Scholar 

  • Anagnostopoulou MA, Day JP (2006) Lead concentrations and isotope ratios in street dust in major cities in Greece in relation to the use of lead in petrol. Sci Total Environ 367:791–799. doi:10.1016/j.scitotenv.2006.01.040

    CAS  Google Scholar 

  • Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Strelkova LP, Popović A, Steinnes E (2009a) Active biomonitoring with wet and dry moss: a case study in an urban area. Environ Chem Lett 7:55–60. doi:10.1007/s10311-008-0135-4

    Google Scholar 

  • Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Mijić Z, Popović A (2009b) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut 157:673–679. doi:10.1016/j.envpol.2008.08.003

    Google Scholar 

  • Aničić M, Tomašević M, Tasić M, Rajšić S, Popović A, Frontasyeva MV, Lierhagen S, Steinnes E (2009c) Monitoring of trace element atmospheric deposition using dry and wet moss bags: accumulation capacity versus exposure time. J Hazard Mater 171:182–188. doi:10.1016/j.jhazmat.2009.05.112

    Google Scholar 

  • Aničić M, Spasić T, Tomašević M, Rajšić S, Tasić M (2011) Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecol Ind 11:824–830. doi:10.1016/j.ecolind.2010.10.009

    Google Scholar 

  • Antanasijević D, Pocajt V, Povrenović D, Perić-Grujić A, Ristić M (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variables optimization. Sci Total Environ 443:551–559. doi:1016/j.scitotenv.2012.10.110

    Google Scholar 

  • Ault WU, Senechal RG, Erlebach WE (1970) Isotopic composition as a natural tracer of lead in the environment. Environ Sci Technol 4:305–313. doi:10.1021/es60039a001

    CAS  Google Scholar 

  • Avila A, Rodrigo A (2004) Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos Environ 38:171–180. doi:10.1016/j.atmosenv.2003.09.067

    CAS  Google Scholar 

  • Azimi S, Rocher V, Muller M, Moilleron R, Thevenot S (2005) Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci Total Environ 337:223–239. doi:10.1016/j.scitotenv.2004.06.020

    CAS  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Heidelberg

    Google Scholar 

  • Becker JS, Dietze HJ (2000) Precise and accurate isotope ratio measurements by ICP-MS. Fresenius J Anal Chem 368:23–30. doi:10.1007/s002160000481

    CAS  Google Scholar 

  • Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schrebery) as biomonitors of heavy metal deposition: from relative to absolute deposition values. Environ Pollut 98:61–71. doi:10.1016/S0269-7491(97)00103-6

    CAS  Google Scholar 

  • Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV (2007) Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ 372:693–706. doi:10.1016/j.scitotenv.2006.10.029

    CAS  Google Scholar 

  • Bi X, Feng X, Yang Y, Li X, Shin GPY, Li F, Qiu G, Li G, Liu T, Fu Z (2009) Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ Pollut 157:834–839. doi:10.1016/j.envpol.2008.11.013

    CAS  Google Scholar 

  • Bilos C, Colombo JC, Skorupka CN, Rodriguez Presa MJ (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111:149–158. doi:10.1016/S0269-7491(99)00328-0

    CAS  Google Scholar 

  • Blum WEH, Horak O, Mentler A, Purshenreiter M (2009) Environmental and ecological chemistry, vol II, Trace elements, Editor Sabljic A, Encyclopedia of Life Support Systems (EPLSS) ISBN: 978-1-84829-693-3

    Google Scholar 

  • Bollhöfer A, Rosman KJR (2000) Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim Cosmochim Acta 64:3251–3262. doi:10.1016/S0016-7037(00)00436-1

    Google Scholar 

  • Bollhöfer A, Rosman KJR (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochim Cosmochim Acta 65:1727–1740. doi:10.1016/S0016-7037(00)00630-X

    Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242. doi:10.1016/S0140-6736(02)11274-8

    CAS  Google Scholar 

  • Buchauer MJ (1973) Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead. Environ Sci Technol 7:131–135. doi:10.1021/es60074a004

    CAS  Google Scholar 

  • Carnevale C, Finzi G, Guariso G, Pisoni E, Volta M (2012) Surrogate models to compute optimal air quality planning policies at a regional scale. Environ Model Software 34:44–50. doi:10.1016/j.envsoft.2011.04.007

    Google Scholar 

  • Chenery SR, Izquierdo M, Marzouk E, Klinck B, Palumbo-Roe B, Tye AM (2012) Soil-plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope catchment of the N. Pennines, UK – A Pb isotope study. Sci Total Environ 433:547–560. doi:10.1016/j.scitotenv.2012.03.004

    CAS  Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies, a review. Environ Pollut 158:1134–1146. doi:10.1016/j.envpol.2009.12.028

    CAS  Google Scholar 

  • Chillrud SN, Hemming S, Shuster EL, Simpson HJ, Bopp RF, Ross JM, Pederson DC, Chaky DA, Tolley LR, Estabrooks F (2003) Stable lead isotopes, contaminant metals and radionuclides in upper Hudson River sediment cores: implications for improved time stratigraphy and transport processes. Chem Geol 199:53–70. doi:10.1016/S0009-2541(03)00055-X

    CAS  Google Scholar 

  • Chow TJ, Earl JL (1970) Lead aerosols in the atmosphere: increasing concentrations. Science 169:577–580

    CAS  Google Scholar 

  • Chow TJ, Earl JL (1972) Lead isotopes in North American coals. Science 176:510–511

    CAS  Google Scholar 

  • Chow TJ, Johnstone MS (1965) Lead isotopes in gasoline and aerosols of Los Angeles Basin, California. Science 147:502–503

    CAS  Google Scholar 

  • Chow TJ, Bruland KW, Bertine K, Soutar A, Koide M, Goldberg ED (1973) Lead pollution: records in southern California coastal sediments. Science 181:551–552

    CAS  Google Scholar 

  • Chow TJ, Snyder CB, Earl JL (1975) Isotope ratios as pollutant source and behaviour indicators. In: Proceedings of a symposium on Isotope ratios as pollutant source and behaviour indicators. Proceedings series, international atomic energy agency, Vienna, 18–22 November 1974, pp 95–108

    Google Scholar 

  • Coe JM, Lindberg SE (1987) The morphology and size distribution of atmospheric particles deposited on foliage and inert surfaces. J Air Pollut Control Assoc 37:237–243

    CAS  Google Scholar 

  • Colette A, Granier C, Hodnebrog Ø, Jakobs H, Maurizi A, Nyiri A, Bessagnet B, D’Angiola A, D’Isidoro M, Gauss M, Meleux F, Memmesheimer M, Mieville A, Rouïl L, Russo F, Solberg S, Stordal F, Tampieri F (2011) Air quality trends in Europe over the past decade: a first multi-model assessment. Atmos Chem Phys 11:11657–11678. doi:10.5194/acpd-11-11657-2011

    CAS  Google Scholar 

  • Cong Z, Kang S, Zhang Y, Li X (2010) Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl Geochem 25:1415–1421. doi:10.1016/j.apgeochem.2010.06.011

    CAS  Google Scholar 

  • Conkova M, Kubiznakova J (2008) Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic. Sci Total Environ 404:440–445. doi:10.1016/j.scitotenv.2008.04.025

    CAS  Google Scholar 

  • De Nicola F, Maisto G, Prati MV, Alfani A (2008) Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut 153:376–383. doi:10.1016/j.envpol.2007.08.008

    Google Scholar 

  • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J L152/1, available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF

  • Dollard GJ (1986) Glasshouse experiments on the uptake of foliar applied lead. Environ Pollut Ecol Biol 40:109–119. doi:10.1016/0143-1471(86)90078-4

    CAS  Google Scholar 

  • Doucet F, Carignan J (2001) Atmospheric Pb isotopic composition and trace metal concentration as revealed by epiphytic lichens: an investigation related to two altitudinal sections in eastern France. Atmos Environ 35:3681–3690. doi:10.1016/S1352-2310(00)00510-0

    CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” – a meaningless term? (IUPAC technical report). Pure Appl Chem 74:793–807. doi:10.1351/pac200274050793

    CAS  Google Scholar 

  • Dunlap C, Steding DD, Bouse R, Unruh J, Alpers C, Flegal AR (2008) Anthropogenic sources of lead in the Sacramento and San Joaquin drainage basins. Geochim Cosmochim Acta 72:5935–5948. doi:10.1016/j.gca.2008.10.006

    CAS  Google Scholar 

  • Duzgoren-Aydin NS, Weiss AL (2008) Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environ Geochem Health 30:577–588. doi:10.1007/s10653-008-9179-4

    Google Scholar 

  • Erel Y, Veron A, Halicz L (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim Cosmochim Acta 61:4495–4505. doi:10.1016/S0016-7037(97)00353-0

    CAS  Google Scholar 

  • Erel Y, Dubowski Y, Halicz L, Erez J, Kaufman A (2001) Lead concentrations and isotopic ratios in the sediments of the sea of Galilee. Environ Sci Technol 35:292–299. doi:10.1021/es001399u

    CAS  Google Scholar 

  • Ewing SA, Christensen JN, Vancuren RA, Cliff SS, Depaolo DJ (2010) Pb isotopes as an indicator of the Asian contribution to particulate air pollution in Urban California. Environ Sci Technol 44:8911–8916. doi:10.1021/es101450t

    CAS  Google Scholar 

  • Facchetti S (1989) Lead in petrol, the isotopic lead experiment. Acc Chem Res 22:370–374. doi:10.1021/ar00166a005

    CAS  Google Scholar 

  • Farmer JG, Eades LJ, Atkins H, Chamnerland DF (2002) Historical trends in the lead isotopic composition of archival Sphagnum mosses from Scotland (1838–2000). Environ Sci Technol 36:152–157. doi:10.1021/es010156e

    CAS  Google Scholar 

  • Faure G (1997) Principles and applications of geochemistry: a comprehensive textbook for geology students. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Flegal AR, Gallon C, Hibdon S, Kuspa ZE, Laporte LF (2010) Declining – but persistent – atmospheric contamination in Central California from the resuspension of historic leaded gasoline emissions as recorded in the Lace Lichen (Ramalina menziesii Taylor) from 1892 to 2006. Environ Sci Technol 44:5613–5618. doi:10.1021/es100246e

    CAS  Google Scholar 

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2−–NO3 – Cl–H2O aerosols. Atmos Chem Phys 7:4639–4659. doi:10.5194/acp-7-4639-2007

    CAS  Google Scholar 

  • Freer-Smith PH, Holloway S, Goodman A (1997) The uptake of particulates by an urban woodland: Site description and particulate composition. Environ Pollut 95:27–35. doi:10.1016/S0269-7491(96)00119-4

    CAS  Google Scholar 

  • Gao ZY, Yin G, Ni SJ, Zhang CJ (2004) Geochemical feature of the urban environmental lead isotope in Chendu city. Carsologica Sinica 23:267–272. doi:cnki:ISSN:1001–4810.0.2004-04-002 002, in Chinese with English abstract

    Google Scholar 

  • Golomb D, Ryan D, Eby N, Underhill J, Zemba S (1997) Atmospheric deposition of toxics onto Massachusetts Bay – I. Metals. Atmos Environ 31:1349–1359. doi:10.1016/S1352-2310(96)00276-2

    Google Scholar 

  • Grousset FE, Quétel CR, Thomas B, Donard OFX, Lambert CE, Guillard F, Monaco A (1995) Anthropogenic vs. Lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles: Northwestern Mediterranean Sea. Mar Chem 48:291–310. doi:10.1016/0304-4203(94)00056-J

    CAS  Google Scholar 

  • Gunn SWA (1990) Multilingual dictionary of disaster medicine and international relief. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gwiazda R, Woolard D, Smith D (1998) Improved lead isotope ratio measurements in environmental and biological samples with a double focusing magnetic sector inductively coupled plasma mass spectrometer (ICP-MS). J Anal Atomic Spectrom 13:1233–1238. doi:10.1039/A804062A, Paper

    CAS  Google Scholar 

  • Haar GT (1970) Air as a source of lead in edible crops. Environ Sci Technol 4:226–229. doi:10.1021/es60038a008

    Google Scholar 

  • Harmens H, Norris AD, Koerber RG, Buse A, Steinnes E, Ruhling A (2008) Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environ Pollut 151:368–376. doi:10.1016/j.envpol.2007.06.043

    CAS  Google Scholar 

  • Harrison RM, Chirgawi MB (1989) The assessment of air and soil as contributors of some trace metals to vegetable plants. I. Use of a filtered air growth cabinet. Sci Total Environ 83:13–34. doi:10.1016/0048-9697(89)90003-X

    CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    CAS  Google Scholar 

  • Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal Atomic Spectrom 13:1001–1008. doi:10.1039/A801965G, Paper

    CAS  Google Scholar 

  • Hoodaji M, Ataabadi M, Payam Najafi P (2012) Biomonitoring of airborne heavy metal contamination. In: Mukesh K (ed) Air pollution – monitoring, modelling, health and control. InTech. doi:10.5772/32963. ISBN 978-953-51-0381-3

    Google Scholar 

  • Hopper JF, Ross HB, Sturges WT, Barrie LA (1991) Regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead. Tellus B 43:45–60. doi:10.1034/j.1600-0889.1991.00004.x

    Google Scholar 

  • Hovmand MF, Nielsen SP, Johnsen I (2009) Root uptake of lead by Norway spruce grown on 210Pb spiked soils. Environ Pollut 157:404–409. doi:10.1016/j.envpol.2008.09.038

    CAS  Google Scholar 

  • Hsu S-C, Liu SC, Jeng W-L, Chou CCK, Hsu R-T (2006) Lead isotope ratios in ambient aerosols from Taipei, Taiwan: identifying long-range transport of airborne Pb from the Yangtze Delta. Atmos Environ 40:5393–5404. doi:10.1016/j.atmosenv.2006.05.003

    CAS  Google Scholar 

  • Hu X, Ding Z (2009) Lead/cadmium contamination and lead isotopic ratios in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China. Bull Environ Contam Toxicol 82:80–84. doi:10.1007/s00128- 008-9562-y

  • Hu X, Zhang Y, Luo J, Xie M, Wang T, Lian H (2011) Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus). Chemosphere 82:1351–1357. doi:10.1016/j.chemosphere.2010.11.079

    CAS  Google Scholar 

  • Hu X, Zhang Y, Ding Z, Tijian W, Hongzhen L, Yuanyuan S, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152. doi:10.1016/j.atmosenv.2012.04.056

  • Husar RB (1994) Ecosystem and the biosphere: metaphors for human-induced material flows. In: Ayres RU, Simonis UE (eds) Industrial metabolism: restructuring for sustainable development. United Nations University Press, Tokyo/New York

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. doi:10.1093/bmb/ldg032

    Google Scholar 

  • Jébrak M, Marcoux E, Nasloubi M, Zaharaoui M (1998) From sandstone- to carbonate- hosted stratabound deposits: an isotope study of galena in the Upper-Moulouya District (Morocco). Miner Deposita 33:406–415. doi:10.1007/s001260050158

    Google Scholar 

  • Jiries A (2003) Vehicular contamination of dust in Amman, Jordan. Environmentalist 23:205–210. doi:10.1023/B:ENVR.0000017390.93161.99

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, New York

    Google Scholar 

  • Klaminder J, Bindler R, Emteryd O, Renberg I (2005) Uptake and recycling of lead by boreal forest plants: quantitative estimates from a site in northern Sweden. Geochim Cosmochim Acta 69:2485–2496. doi:10.1016/j.gca.2004.11.013

    CAS  Google Scholar 

  • Klaminder J, Bindler R, Renberg I (2008) The biogeochemistry of atmospherically derived Pb in the boreal forest of Sweden. Appl Geochem 23:2922–2931. doi:10.1016/j.apgeochem.2008.04.007

    CAS  Google Scholar 

  • Komárek M, Chrastný V, Štíchová J (2007) Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ Int 33:677–684. doi:10.1016/j.envint.2007.02.001

    Google Scholar 

  • Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577. doi:10.1016/j.envint.2007.10.005

    Google Scholar 

  • Kunert M, Friese K, Weckert V, Markert B (1999) Lead Isotope systematics in Polytrichum formosum: an example from a biomonitoring field study with mosses. Environ Sci Technol 33:3502–3505. doi:10.1021/es981352x

    CAS  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79:281–286

    CAS  Google Scholar 

  • Li F-L, Liu C-Q, Yang Y-G, Bi X-Y, Liu Z-Y, Zhao Z-Q (2012) Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach. Sci Total Environ 431:339–347. doi:10.1016/j.scitotenv.2012.05.040

    CAS  Google Scholar 

  • Marcantonio F, Zimmerman A, Xu Y, Canuel E (2002) A Pb isotope record of mid- Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments. Mar Chem 77:123–132. doi:10.1016/S0304-4203(01)00081-0

    CAS  Google Scholar 

  • Marcoux E, Wadjinny A (2005) The Ag–Hg Zgounder ore deposit (Jebel Siroua, Anti- Atlas, Morocco): a Neoproterozoic epithermal mineralization of the Imiter type. C R Geosci 337:1439–1446. doi:10.1016/j.crte.2005.09.005

    CAS  Google Scholar 

  • Marcoux E, Belkabir A, Gibson HL, Lentz D, Ruffet G (2008) Draa Sfar, Morocco: a Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane. Ore Geol Rev 33:307–328. doi:10.1016/j.oregeorev.2007.03.004

    Google Scholar 

  • Marguí E, Iglesias M, Queralt I, Hidalgo M (2006) Lead isotope ratio measurements by ICP-QMS to identify metal accumulation in vegetation specimens growing in mining environments. Sci Total Environ 367:988–998. doi:10.1016/j.scitotenv.2006.03.036

    Google Scholar 

  • Marjanović DM, Vukčević MM, Antonović GD, Dimitrijević IS, Jovanović MĐ, Matavulj MM, Ristić ĐM (2009) Heavy metals concentration in soils from parks and green areas in Belgrade. J Serb Chem Soc 74:697–706. doi:10.2298/JSC0906697M

    Google Scholar 

  • Markert B (1993) Instrumental analysis of plants. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in terrestrial environment. VCH, Weinheim, pp 65–103

    Google Scholar 

  • Markert B (1995) Sampling and sample pretreatment. In: Quevauviller PH (ed) Quality assurance in environmental monitoring. VCH, Weinheim/New York, pp 215–254

    Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples, methods and applications. Wiley, New York

    Google Scholar 

  • Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21(S1):77–82. doi:10.1016/j.jtemb.2007.09.015

    Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162. doi:10.1038

    CAS  Google Scholar 

  • Melaku S, Morris V, Raghavan D, Hosten C (2008) Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ Pollut 155:88–98. doi:10.1016/j.envpol.2007.10.038

    Google Scholar 

  • Mihaljevič M, Ettler V, Šebek O, Sracek O, Kříbek B, Kyncl T, Majer V, Veselovský F (2011) Lead isotopic and metallic pollution record in tree rings from the Copperbelt mining–smelting area, Zambia. Water Air Soil Pollut 216(657):668. doi:10.1007/s11270-010-0560-4

    Google Scholar 

  • Milosavljević BN, Ristić ĐM, Perić-Grujić AA, Filipović MJ, Štrbac BS, LjZ R, Kalagasidis Krušić TM (2010) Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chem Eng J 165:554–562. doi:10.1016/j.cej.2010.09.072

  • Milosavljević BN, Ristić ĐM, Perić-Grujić AA, Filipović MJ, Štrbac BS, LjZ R, Kalagasidis Krušić TM (2011) Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J Hazard Mater 192:846–854. doi:10.1016/j.jhazmat.2011.05.093

    Google Scholar 

  • Monna F, Lancelot JR, Croudace I, Cundy A, Lewis JT (1997) Pb isotopic signature of urban air in France and United Kingdom: implications on Pb pollution sources. Environ Sci Technol 31:2277–2286. doi:10.1021/es960870+

    CAS  Google Scholar 

  • Monna F, Bouchaou L, Rambeau C, Losno R, Bruguier O, Dongarrà G, Black S, Chateau C (2012) Lichens used as monitors of atmospheric pollution around agadir (Southwestern Morocco) – a case study predating lead-free gasoline. Water Air Soil Pollut 223:1263–1274. doi:10.1007/s11270-011-0942-2

    CAS  Google Scholar 

  • Moshammer H, Neuberger N (2003) The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children. Atmos Environ 37:1737–1744. doi:10.1016/S1352-2310(03)00073-6

    CAS  Google Scholar 

  • Motelay-Massei A, Ollivon D, Tiphagne K, Garban B (2005) Atmospheric bulk deposition of trace metals to the Seine river Basin, France: concentrations, sources and evolution from 1988 to 2001 in Paris. Water Air Soil Pollut 164:119–135. doi:10.1007/s11270-005-1659-x

    CAS  Google Scholar 

  • Mukai H, Tanaka TA, Fujii Y, Zeng Y, Hong J, Tang S, Guo H, Xue Z, Sun J, Zhou D, Xue J, Zhao G, Zhai J, Gu ZP (2001) Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ Sci Technol 35:1064–1071. doi:10.1021/es001399u

    CAS  Google Scholar 

  • Nica VD, Bura M, Gergen I, Harmanescu M, Bordean D-M (2012) Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem Cent J 6:55. doi:10.1186/1752-153X-6-55

    CAS  Google Scholar 

  • Nier AO (1938) Variations in the relative abundances of the isotopes of common lead from various sources. J Am Chem Soc 60:1571–1576. doi:10.1021/ja01274a016

    CAS  Google Scholar 

  • Nordberg M, Templeton MD, Andersen O, Duffus HJ (2007) Glossary of terms used in toxicology. Pure Appl Chem 79:1153–1344. doi:10.1351/pac200779071153

    Google Scholar 

  • Nordberg M, Templeton MD, Andersen O, Duffus HJ (2009) Glossary of terms used in ecotoxicology. Pure Appl Chem 81:829–970. doi:10.1351/PAC-REC-08-07-09

    CAS  Google Scholar 

  • Notten MJM, Walraven N, Beets CJ, Vroon P, Rozema J, Aerts R (2008) Investigating the origin of Pb pollution in a terrestrial soil–plant–snail food chain by means of Pb isotope ratios. Appl Geochem 23:1581–1593. doi:10.1016/j.apgeochem.2008.01.010

    CAS  Google Scholar 

  • Nriagu JO (1990) The rise and fall of leaded gasoline. Sci Total Environ 92:13–28. doi:10.1016/0048-9697(90)90318-O

    CAS  Google Scholar 

  • Nriagu JO (1998) Tales told in lead. Science 281:1622–1623

    CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi:10.1038/333134a0

    CAS  Google Scholar 

  • Office of the European Union (2011) Air quality in Europe – 2011 report. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Olowoyo JO, van Heerden E, Fisher JL, Baker C (2010) Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmos Environ 44:1826–1830. doi:10.1016/j.atmosenv.2010.01.048

    CAS  Google Scholar 

  • Onjia A (2007) Analytical techniques for determination and monitoring of chemical substances affecting the corrosion. Struct Integr Life 7:79–82

    Google Scholar 

  • Othman I, Al-Oudat M, Al-Masri MS (1997) Lead levels in roadside soils and vegetation of Damascus city. Sci Total Environ 207:43–48

    CAS  Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere. Wiley, New York

    Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298. doi:10.1139/a01-012

    CAS  Google Scholar 

  • Pandey JS, Kumar R, Devotta S (2005) Health risks of NO2, SPM and SO2 in Delhi (India). Atmos Environ 39:6868–6874. doi:10.1016/j.atmosenv.2005.08.004

    CAS  Google Scholar 

  • Patrick GJ, Farmer JG (2006) A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination. Sci Total Environ 362:278–291. doi:10.1016/j.scitotenv.2005.12.004

    CAS  Google Scholar 

  • Patrick GJ, Farmer JG (2007) A lead isotopic assessment of tree bark as a biomonitor of contemporary atmospheric lead. Sci Total Environ 388:343–356. doi:10.1016/j.scitotenv.2007.07.047

    CAS  Google Scholar 

  • Pope CA III, Dockery DW, Schwartz J (1995) Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 7:1–18

    CAS  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 4:7520–7540. doi:10.1002/anie.200501122

    Google Scholar 

  • Rabinowitz MB, Wetherill GW (1972) Identifying sources of lead contamination by stable isotope techniques. Environ Sci Technol 1972:705–709. doi:10.1021/es60067a003

    Google Scholar 

  • Radojević DM, Pocajt VV, Popović IG, Perić-Grujić AA, Ristić MD (2013) Forecasting of greenhouse gas emissions in Serbia using artificial neural networks. Energ Source Part A 35:733–740. doi:10.1080/15567036.2010.514597

    Google Scholar 

  • Rajšić S, Mijić Z, Tasić M, Radenković M, Joksić J (2008) Evaluation of the levels and sources of trace elements in urban particulate matter. Environ Chem Lett 6:95–100. doi:10.1007/s10311-007-0115-0

    Google Scholar 

  • Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Negrel P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2012) Lead and lead isotopes in agricultural soils of Europe – the continental perspective. Appl Geochem 27:532–542. doi:10.1016/j.apgeochem.2011.12.012

    CAS  Google Scholar 

  • Reuer KM, Boyle AE, Grant CB (2003) Lead isotope analysis of marine carbonates and seawater by multiple collector ICP-MS. Chem Geol 200:137–153. doi:10.1016/S0009-2541(03)00186-4

    CAS  Google Scholar 

  • Ritson P, Bouse R, Flegal AR, Luoma SN (1999) Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary. Mar Chem 64:71–83. doi:10.1016/S0304-4203(98)00085-1

    CAS  Google Scholar 

  • Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42. doi:10.1016/j.atmosenv.2012.03.026

    CAS  Google Scholar 

  • Rosman KR, Ly C, Steinnes E (1998) Spatial and temporal variation in isotopic composition of atmospheric lead in Norwegian Moss. Environ Sci Technol 32:2542–2546. doi:10.1021/es9710215

    CAS  Google Scholar 

  • Rossini P, Guerzoni S, Molinaroli E, Rampazzo G, De Lazzari A, Zancanaro A (2005) Atmospheric bulk deposition to the lagoon of Venice Part I. Fluxes of metals, nutrients and organic contaminants. Environ Int 31:959–974. doi:10.1016/j.envint.2005.05.006

    CAS  Google Scholar 

  • Rucandio IM, Petit-Domíngez DM, Fidalgo-Hijano C, García-Gimenéz R (2011) Biomonitoring of chemical elements in an urban environment using arboreal and bush plant species. Environ Sci Pollut Res 18:51–63. doi:10.1007/s11356-010- 0350-y

    Google Scholar 

  • Rühling Ǻ, Tyler G (1968) An ecological approach to lead problem. Bot Notiser 121:321–342

    Google Scholar 

  • Saeedi M, Li YL, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227–228:9–17. doi:10.1016/j.jhazmat.2012.04.047

  • Schauer JJ, RoggeWF HLM, Mazurek MA, Cass GR, Simoneit BRT (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855. doi:10.1016/1352-2310(96)00085-4

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Serbula MS, DjD M, Kovacevic MR, Ilic AA (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotox Environ Safe 76:209–214. doi:10.1016/j.ecoenv.2011.10.009

  • Sert E, Uğur A, Özden B, Murat Saç M, Camgöz B (2011) Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. J Environ Radioact 102:535–542. doi:10.1016/j.jenvrad.2011.02.005

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. doi:10.1590/S1677-04202005000100004

    CAS  Google Scholar 

  • Sharma SG, Srinivas MS (2009) Study of chemical composition and morphology of airborne particles in Chandigarh, India using EDXRF and SEM techniques. Environ Monit Assess 150:417–425. doi:10.1007/s10661-008-0240-7

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall MF (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ Monit Assess 142:269–278. doi:10.1007/s10661-007-9924-7

    CAS  Google Scholar 

  • Shotyk W, Zheng J, Krachler M, Zdanowicz C, Koerner R, Fisher D (2005) Predominance of industrial Pb in recent snow (1994–2004) and ice (1842–1996) from Devon Island, Arctic Canada. Geophys Res Lett 32, L21814. doi:10.1029/2005GL023860

    Google Scholar 

  • Simonetti A, Gariépy C, Carignan J (2000) Pb and Sr isotopic composition of snowpack from Québec, Canada: inferences on the sources and deposition budgets of atmospheric heavy metals. Geochim Cosmochim Acta 64:5–20. doi:10.1016/S0016-7037(99)00207-0

    CAS  Google Scholar 

  • Sinclair AH, Tolsma D (2004) Associations and lags between air pollution and acute respiratory visits in an ambulatory care setting: 25-month results from the aerosol research and inhalation epidemiological study. J Air Waste Manage Assoc 54:1212–1218

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012- 821X(75)90088-6

    Google Scholar 

  • Steding DJ, Dunlap CE, Flegal AR (2000) New isotopic evidence for chronic lead contamination in the San Francisco Bay estuary system: implications for the persistence of past industrial lead emissions in the biosphere. Proc Natl Acad Sci U S A 97:11181–11186

    CAS  Google Scholar 

  • Steinnes E, Sjøbakk TE, Donisa C, Brännvall M-L (2005a) Quantification of pollutant lead in forest soils. Soil Sci Soc Am J 69:1399–1404. doi:10.2136/sssaj2004.0095

    CAS  Google Scholar 

  • Steinnes E, Berg GA, Hjelmseth H (2005b) Atmospheric deposition of lead in Norway: spatial and temporal variation in isotopic composition. Sci Total Environ 336:105–117. doi:10.1016/j.scitotenv.2004.04.056

    CAS  Google Scholar 

  • Sucharová J, Suchara I, Reimann C, Boyd R, Filzmoser P, Englmaier P (2011) Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech Republic. Appl Geochem 26:1205–1214. doi:10.1016/j.apgeochem.2011.04.009

    Google Scholar 

  • Šućur K, Aničić M, Tomašević M, Antanasijević D, Perić-Grujić A, Ristić M (2010) Urban deciduous tree leaves as biomonitors of trace element (As, V, and Cd) atmospheric pollution in Belgrade, Serbia. J Serb Chem Soc 75:1453–1461. doi:10.2298/JSC100319079S

    Google Scholar 

  • Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230. doi:10.1016/S0013-9351(03)00141-5

    CAS  Google Scholar 

  • Tasić DM, Rajčić FS, Novaković TV, Tomašević NM (2001) Contribution to the methodology of dry deposition measurements. Fresen Environ Bull 10:305–309

    Google Scholar 

  • Tasić M, Ðuric-Stanojevic B, Rajšic S, Mijic Z, Novakovic V (2006) Physico-chemical characterization of PM10 and PM2.5 in the Belgrade Urban Area. Acta Chim Slov 53(3):401–405

    Google Scholar 

  • Tjell JC, Hovmand MF, Mosbaek H (1979) Atmospheric lead pollution of grass grown in a background area in Denmark. Nature 280:425–426

    CAS  Google Scholar 

  • Tomašević M, Rajšić S, Đorđević D, Tasić M, Krstić J, Novaković V (2004) Heavy metals accumulation in tree leaves from urban areas. Environ Chem Lett 2:151–154. doi:10.1007/s10311-004-0081-8

    Google Scholar 

  • Tomašević M, Vukmirović Z, Rajšić S, Tasić M, Stevanović B (2005) Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 61:753–760. doi:10.1016/j.chemosphere.2005.03.077

    Google Scholar 

  • Tomašević M, Antanasijević D, Aničić M, Deljanin I, Perić-Grujić A, Ristić M (2013) Lead concentrations and isotope ratios in urban tree leaves. Ecol Ind 24:504–509. doi:10.1016/j.ecolind.2012.08.007

    Google Scholar 

  • Turan D, Kocahakimoglu C, Kavcar P, Gaygısız H, Atatanir L, Turgut C, Sofuoglu CS (2011) The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın, Turkey. Environ Sci Pollut Res Int 18:355–364. doi:10.1007/s11356-010-0378-z

    CAS  Google Scholar 

  • Tyler Miller G, Spoolman ES (2010) Environmental science. Brooks/Cole, Belmont

    Google Scholar 

  • UNEP (2010) Assessing the environmental impacts of consumption and production: priority products and materials, a report of the working group on the environmental impacts of products and materials to the international panel for Sustainable Resource Management. Hertwich E, van der Voet E, Suh S, Tukker A, Huijbregts M, Kazmierczyk P, Lenzen M, McNeely J, Moriguchi Y. ISBN: 978-92-807-3084-5. Available at: http://www.unep.org/resourcepanel/Portals/24102/PDFs/PriorityProductsAndMaterials_Report.pdf

  • United Nations (1997) Glossary of environment statistics, studies in methods, Series F, No. 67. Department for Economic and Social Information and Policy Analysis, New York. ISBN 92-1-161386-8

    Google Scholar 

  • US EPA (1989) Environmental acronyms, abbreviations and glossary of terms. Executive Enterprises, Inc., New York

    Google Scholar 

  • US EPA (2002) Guidelines for the application of SEM/EDX analytical techniques to particulate matter samples. US Environmental Protection Agency. EPA-600/R- 02–070, Research Triangle Park

    Google Scholar 

  • US EPA (2006) Lead human exposure and health risk assessments and ecological risk assessment for selected areas, Pilot Phase, External Review Draft Technical Report, ICF International Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/naaqs/standards/pb/data/PbNAAQS_pilot_riskassessment_technical-report.pdf

  • US EPA (2010) Our nation’s air, status and trends through 2010, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards Research, 2012 –EPA-454/R-12-001, Research Triangle Park

    Google Scholar 

  • Vallero DA (2008) Fundamentals of air pollution. Elsevier Inc., London, p 60

    Google Scholar 

  • Van der Gon HD, Appelman W (2009) Lead emissions from road transport in Europe. Sci Total Environ 407:5367–5372. doi:10.1016/j.scitotenv.2009.06.027

    Google Scholar 

  • Van Leeuwen CJ, Vermiere TG (2007) Risk assessment of chemicals: an introduction, 2nd edn. Springer, Dordrecht, pp 106–111

    Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849. doi:10.1016/j.jaerosci.2008.05.007

    CAS  Google Scholar 

  • Vicente AB, Sanfeliu T, Jordan MM (2012) Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb. J Environ Manage 108:92–101. doi:10.1016/j.jenvman.2012.04.032

    CAS  Google Scholar 

  • Vukmirović Z, Unkašević M, Lazić L, Tošić I, Rajšić S, Tasić M (2004) Analysis of the Saharan dust regional transport. Meteorol Atmos Phys 85(4):265–273. doi:10.1007/s00703-003-0010-6

    Google Scholar 

  • Wall SM, John W, Ondo JL (1988) Measurement of aerosol size distributions for nitrate and major ionic species. Atmos Environ 22:1649–1656. doi:10.1016/0004- 6981(88)90392-7

    Google Scholar 

  • Wang S, Zhang J (2006) Blood lead levels in children, China. Environ Res 101:412–418. doi:10.1016/j.envres.2005.11.007

    CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from china. Microchem J 94:99–107. doi:10.1016/j.microc.2009.09.014

    CAS  Google Scholar 

  • Weiss P, Offenthaler I, Öhlinger R, Wimmer J (2003) Higher plants as accumulative bioindicators. In: Markert B, Breure AM, Zechmeister HG (eds) Bioindicators & biomonitors, principles, concepts and applications, vol 6. Elsevier, Amsterdam, pp 465–500

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, WHO regional publications, European series, No. 91. World Health Organization Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2006) Air quality guidelines – global update 2005. World Health Organization Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. Joint task force on the health aspects of long-range transboundary air pollution. International Government Publication, Geneva

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21. doi:10.1016/S0269- 7491(02)00124-0

    Google Scholar 

  • Wong CSC, Li XD, Zhang G, Qi SH, Peng XZ (2003) Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos Environ 37:767–776. doi:10.1016/S1352-2310(02)00929-9

    CAS  Google Scholar 

  • Zheng C (1994) An approach on the source of ore-forming metals of lead–zinc deposits in northwestern part, Guizhou. J Guilin Coll Geol 14:113–124. doi:cnki:SCN:451214PT.0.1994-02-000. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150. doi:10.1016/j.aca.2007.11.018

    CAS  Google Scholar 

  • Zhu B, Chen Y, Peng J (2001) Lead isotope geochemistry of the urban environment in the Pearl River Delta. Appl Geochem 16:409–417. doi:10.1016/S0883 2927(00)00047-0

    Google Scholar 

Download references

Acknowledgment

 The authors acknowledge financial support from Ministry of Education and Science of The Republic of Serbia, project Nos. III 43007, OI 173028 and OI 172007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Tomašević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ristić, M., Perić-Grujić, A., Antanasijević, D., Ristić, M., Urošević, M.A., Tomašević, M. (2013). Plants as Monitors of Lead Air Pollution. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_8

Download citation

Publish with us

Policies and ethics