Skip to main content

Resetting the Aging Clock: Implications for Managing Age-Related Diseases

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1260))

Abstract

Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations DoEaSAPD (2017) World population ageing 2017 – highlights (ST/ESA/SER.A/397)

    Google Scholar 

  2. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M (2017) Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389(10076):1323–1335

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ortman JM, Velkoff VA, Hogan A (2014) An aging nation: the older population in the United States, population estimates and projections (U.S. Census Bureau), (commerce Do). https://www.census.gov/prod/2014pubs/p25-1140.pdf

  4. Vincent GK, Velkoff VA (2010) The next four decades the older population in the United States: 2010 to 2050 (U.S. Census Bureau, economics and statistics administration), (commerce Do). https://www.census.gov/prod/2010pubs/p25-1138.pdf

  5. Osborn R, Doty MM, Moulds D, Sarnak DO, Shah A (2017) Older Americans were sicker and faced more financial barriers to health care than counterparts in other countries. Health Aff (Millwood) 36(12):2123–2132

    Article  Google Scholar 

  6. Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26(10):R432–R443

    Article  CAS  PubMed  Google Scholar 

  7. Webb IC, Antle MC, Mistlberger RE (2014) Regulation of circadian rhythms in mammals by behavioral arousal. Behav Neurosci 128(3):304–325

    Article  PubMed  Google Scholar 

  8. Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN et al (2017) Meal timing regulates the human circadian system. Curr Biol 27(12):1768–1775.e1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diffey BL (2011) An overview analysis of the time people spend outdoors. Br J Dermatol 164(4):848–854

    Article  CAS  PubMed  Google Scholar 

  10. Matz CJ, Stieb DM, Davis K, Egyed M, Rose A, Chou B et al (2014) Effects of age, season, gender and urban-rural status on time-activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2). Int J Environ Res Public Health 11(2):2108–2124

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smolensky MH, Sackett-Lundeen LL, Portaluppi F (2015) Nocturnal light pollution and underexposure to daytime sunlight: complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 32(8):1029–1048

    Article  PubMed  Google Scholar 

  12. Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE et al (2017) Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ 607-608:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Falchi F, Cinzano P, Duriscoe D, Kyba CC, Elvidge CD, Baugh K et al (2016) The new world atlas of artificial night sky brightness. Sci Adv 2(6):e1600377. https://doi.org/10.1126/sciadv.1600377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kyba CCM, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A, Hölker F et al (2017) Artificially lit surface of earth at night increasing in radiance and extent. Sci Adv 3(11):e1701528. https://doi.org/10.1126/sciadv.1701528

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ohayon MM, Milesi C (2016) Artificial outdoor nighttime lights associate with altered sleep behavior in the American general population. Sleep 39(6):1311–1320

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526(Pt 3):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glickman G, Levin R, Brainard GC (2002) Ocular input for human melatonin regulation: relevance to breast cancer. Neuro Endocrinol Lett 23(Suppl 2):17–22

    CAS  PubMed  Google Scholar 

  19. Bedrosian TA, Nelson RJ (2017) Timing of light exposure affects mood and brain circuits. Transl Psychiatry 7(1):e1017. https://doi.org/10.1038/tp.2016.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A et al (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 107(43):18664–18669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 43(3):215–224

    Article  CAS  PubMed  Google Scholar 

  22. Touitou Y, Reinberg A, Touitou D (2017) Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci 173:94–106

    Article  CAS  PubMed  Google Scholar 

  23. Hölker F, Wolter C, Perkin EK, Tockner K (2010) Light pollution as a biodiversity threat. Trends Ecol Evol 25(12):681–682

    Article  PubMed  Google Scholar 

  24. Russart KLG, Nelson RJ (2018) Light at night as an environmental endocrine disruptor. Physiol Behav 190:82–89

    Article  CAS  PubMed  Google Scholar 

  25. Chang AM, Aeschbach D, Duffy JF, Czeisler CA (2015) Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A 112(4):1232–1237

    Article  CAS  PubMed  Google Scholar 

  26. Oh JH, Yoo H, Park HK, Do YR (2015) Analysis of circadian properties and healthy levels of blue light from smartphones at night. Sci Rep 5:11325. https://doi.org/10.1038/srep11325

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wood B, Rea MS, Plitnick B, Figueiro MG (2013) Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl Ergon 44(2):237–240

    Article  PubMed  Google Scholar 

  28. Gringras P, Middleton B, Skene DJ, Revell VL (2015) Bigger, brighter, bluer-better? Current light-emitting devices - adverse sleep properties and preventative strategies. Front Public Health 3:233. https://doi.org/10.3389/fpubh.2015.00233

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cajochen C, Frey S, Anders D, Späti J, Bues M, Pross A et al (2011) Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol (1985) 110(5):1432–1438

    Article  Google Scholar 

  30. Heo JY, Kim K, Fava M, Mischoulon D, Papakostas GI, Kim MJ et al (2017) Effects of smartphone use with and without blue light at night in healthy adults: a randomized, double-blind, cross-over, placebo-controlled comparison. J Psychiatr Res 87:61–70

    Article  PubMed  Google Scholar 

  31. Touitou Y, Touitou D, Reinberg A (2016) Disruption of adolescents’ circadian clock: the vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol Paris 110(4 Pt B):467–479

    Article  PubMed  Google Scholar 

  32. Alterman T, Luckhaupt SE, Dahlhamer JM, Ward BW, Calvert GM (2013) Job insecurity, work-family imbalance, and hostile work environment: prevalence data from the 2010 National Health Interview Survey. Am J Ind Med 56(6):660–669

    Article  PubMed  Google Scholar 

  33. Alterman T, Luckhaupt SE, Dahlhamer JM, Ward BW, Calvert GM (2013) Prevalence rates of work organization characteristics among workers in the U.S.: data from the 2010 National Health Interview Survey. Am J Ind Med 56(6):647–659

    Article  PubMed  Google Scholar 

  34. Knutson KL, Van Cauter E, Rathouz PJ, DeLeire T, Lauderdale DS (2010) Trends in the prevalence of short sleepers in the USA: 1975-2006. Sleep 33(1):37–45

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saad L (2014) The “40-hour” workweek is actually longer -- by seven hours. In: Full-time U.S. workers, on average, report working 47 hours weekly (Gallup). https://news.gallup.com/poll/175286/hour-workweek-actually-longer-seven-hours.aspx

  36. Ford ES, Cunningham TJ, Croft JB (2015) Trends in self-reported sleep duration among US Adults from 1985 to 2012. Sleep 38(5):829–832

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB (2016) Prevalence of healthy sleep duration among adults--United States, 2014. MMWR Morb Mortal Wkly Rep 65(6):137–141

    Article  PubMed  Google Scholar 

  38. National Center for Chronic Disease Prevention and Health Promotion DoPH (2014) Short sleep duration among US Adults. Centers for Disease Control and Prevention

    Google Scholar 

  39. Adams RJ, Appleton SL, Taylor AW, Gill TK, Lang C, McEvoy RD et al (2017) Sleep health of Australian adults in 2016: results of the 2016 Sleep Health Foundation national survey. Sleep Health 3(1):35–42

    Article  PubMed  Google Scholar 

  40. Rajaratnam SM, Arendt J (2001) Health in a 24-h society. Lancet 358(9286):999–1005

    Article  CAS  PubMed  Google Scholar 

  41. Swanson LM, Arnedt JT, Rosekind MR, Belenky G, Balkin TJ, Drake C (2011) Sleep disorders and work performance: findings from the 2008 National Sleep Foundation Sleep in America poll. J Sleep Res 20(3):487–494

    Article  PubMed  Google Scholar 

  42. Conway SH, Pompeii LA, Gimeno Ruiz de Porras D, Follis JL, Roberts RE (2017) The identification of a threshold of long work hours for predicting elevated risks of adverse health outcomes. Am J Epidemiol 186(2):173–183

    Article  PubMed  Google Scholar 

  43. Fadel M, Sembajwe G, Gagliardi D, Pico F, Li J, Ozguler A et al (2019) Association between reported long working hours and history of stroke in the CONSTANCES cohort. Stroke 50(7):1879–1882

    Article  PubMed  Google Scholar 

  44. Kivimäki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson EI, Alfredsson L et al (2015) Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet 386(10005):1739–1746

    Article  PubMed  Google Scholar 

  45. Kivimäki M, Virtanen M, Kawachi I, Nyberg ST, Alfredsson L, Batty GD et al (2015) Long working hours, socioeconomic status, and the risk of incident type 2 diabetes: a meta-analysis of published and unpublished data from 222 120 individuals. Lancet Diabetes Endocrinol 3(1):27–34

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luckhaupt SE, Tak S, Calvert GM (2010) The prevalence of short sleep duration by industry and occupation in the National Health Interview Survey. Sleep 33(2):149–159

    Article  PubMed  PubMed Central  Google Scholar 

  47. Costa G (2010) Shift work and health: current problems and preventive actions. Saf Health Work 1(2):112–123

    Article  PubMed  PubMed Central  Google Scholar 

  48. Costa G, Akerstedt T, Nachreiner F, Baltieri F, Carvalhais J, Folkard S et al (2004) Flexible working hours, health, and well-being in Europe: some considerations from a SALTSA project. Chronobiol Int 21(6):831–844

    Article  PubMed  Google Scholar 

  49. Winkler MR, Mason S, Laska MN, Christoph MJ, Neumark-Sztainer D (2018) Does non-standard work mean non-standard health? Exploring links between non-standard work schedules, health behavior, and well-being. SSM Popul Health 4:135–143

    Article  PubMed  Google Scholar 

  50. Hänecke K, Tiedemann S, Nachreiner F, Grzech-Sukalo H (1998) Accident risk as a function of hour at work and time of day as determined from accident data and exposure models for the German working population. Scand J Work Environ Health 24(Suppl 3):43–48

    PubMed  Google Scholar 

  51. Lombardi DA, Folkard S, Willetts JL, Smith GS (2010) Daily sleep, weekly working hours, and risk of work-related injury: US National Health Interview Survey (2004-2008). Chronobiol Int 27(5):1013–1030

    Article  PubMed  Google Scholar 

  52. Golombek DA, Casiraghi LP, Agostino PV, Paladino N, Duhart JM, Plano SA et al (2013) The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107(4):310–322

    Article  PubMed  Google Scholar 

  53. Schlosser Covell GE, Dhawan PS, Lee Iannotti JK, Hoffman-Snyder CR, Wellik KE, Caselli RJ et al (2012) Disrupted daytime activity and altered sleep-wake patterns may predict transition to mild cognitive impairment or dementia: a critically appraised topic. Neurologist 18(6):426–429

    Article  PubMed  Google Scholar 

  54. Åkerstedt T, Hallvig D, Kecklund G (2017) Normative data on the diurnal pattern of the Karolinska Sleepiness Scale ratings and its relation to age, sex, work, stress, sleep quality and sickness absence/illness in a large sample of daytime workers. J Sleep Res 26(5):559–566

    Article  PubMed  Google Scholar 

  55. Åkerstedt T, Kecklund G (2017) What work schedule characteristics constitute a problem to the individual? A representative study of Swedish shift workers. Appl Ergon 59(Pt A):320–325

    Article  PubMed  Google Scholar 

  56. Åkerstedt T, Narusyte J, Svedberg P, Kecklund G, Alexanderson K (2017) Night work and prostate cancer in men: a Swedish prospective cohort study. BMJ Open 7(6):e015751. https://doi.org/10.1136/bmjopen-2016-015751

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koritala BSC, Çakmaklı S (2018) The human circadian clock from health to economics. Psych J 7(4):176–196

    Article  PubMed  Google Scholar 

  58. Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22(10):939–943

    Article  CAS  PubMed  Google Scholar 

  59. Wittmann M, Paulus M, Roenneberg T (2010) Decreased psychological well-being in late 'chronotypes' is mediated by smoking and alcohol consumption. Subst Use Misuse. 45 (1-2): 15–30.

    Google Scholar 

  60. Koopman ADM, Rauh SP, van’t Riet E, Groeneveld L, van der Heijden AA, Elders PJ et al (2017) The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the New Hoorn Study. J Biol Rhythm 32(4):359–368

    Article  Google Scholar 

  61. Rutters F, Lemmens SG, Adam TC, Bremmer MA, Elders PJ, Nijpels G et al (2014) Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile? J Biol Rhythm 29(5):377–383

    Article  Google Scholar 

  62. Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB (2015) Social jetlag, chronotype, and cardiometabolic risk. J Clin Endocrinol Metab 100(12):4612–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stoner L, Castro N, Signal L, Skidmore P, Faulkner J, Lark S et al (2018) Sleep and adiposity in preadolescent children: the importance of social jetlag. Child Obes 14(3):158–164

    Article  PubMed  Google Scholar 

  64. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  CAS  PubMed  Google Scholar 

  65. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705

    Article  CAS  PubMed  Google Scholar 

  66. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14(24):2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eastman C, Rechtschaffen A (1983) Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination. Physiol Behav 31(4):417–427

    Article  CAS  PubMed  Google Scholar 

  69. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  71. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685

    Article  CAS  PubMed  Google Scholar 

  72. Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413):502–504

    Article  CAS  PubMed  Google Scholar 

  73. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95(1):340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073

    Article  CAS  PubMed  Google Scholar 

  76. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206

    Article  CAS  PubMed  Google Scholar 

  77. Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M et al (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389(6650):512–516

    Article  CAS  PubMed  Google Scholar 

  78. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8(4):476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ et al (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109(4):497–508

    Article  CAS  PubMed  Google Scholar 

  80. Mieda M, Okamoto H, Sakurai T (2016) Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol 26(18):2535–2542

    Article  CAS  PubMed  Google Scholar 

  81. Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S et al (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85(5):1103–1116

    Article  CAS  PubMed  Google Scholar 

  82. Park J, Zhu H, O’Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS et al (2016) Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central circadian clock. Front Neurosci 10:481. https://doi.org/10.3389/fnins.2016.00481

    Article  PubMed  PubMed Central  Google Scholar 

  83. Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythm 19(1):35–46

    Article  Google Scholar 

  84. Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE et al (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8(10):e1000513. https://doi.org/10.1371/journal.pbio.1000513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91(6):855–860

    Article  CAS  PubMed  Google Scholar 

  86. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  CAS  PubMed  Google Scholar 

  87. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  CAS  PubMed  Google Scholar 

  88. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916(1–2):172–191

    Article  CAS  PubMed  Google Scholar 

  89. Abrahamson EE, Moore RY (2001) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 889(1–2):1–22

    Article  CAS  PubMed  Google Scholar 

  90. Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305(3):508–525

    Article  CAS  PubMed  Google Scholar 

  91. Mieda M (2019) The network mechanism of the central circadian pacemaker of the SCN: do AVP neurons play a more critical role than expected? Front Neurosci 13:139. https://doi.org/10.3389/fnins.2019.00139

    Article  PubMed  PubMed Central  Google Scholar 

  92. Leak RK, Card JP, Moore RY (1999) Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res 819(1–2):23–32

    Article  CAS  PubMed  Google Scholar 

  93. Guzmán-Ruiz M, Saderi N, Cazarez-Márquez F, Guerrero-Vargas NN, Basualdo MC, Acosta-Galván G et al (2014) The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats. Endocrinology 155(2):525–535

    Article  PubMed  Google Scholar 

  94. Myers MG, Olson DP (2012) Central nervous system control of metabolism. Nature 491(7424):357–363

    Article  CAS  PubMed  Google Scholar 

  95. Williams KW, Elmquist JK (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15(10):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chao PT, Yang L, Aja S, Moran TH, Bi S (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13(5):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiater MF, Mukherjee S, Li AJ, Dinh TT, Rooney EM, Simasko SM et al (2011) Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol 301(5):R1569–R1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akabayashi A, Levin N, Paez X, Alexander JT, Leibowitz SF (1994) Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Mol Cell Neurosci 5(3):210–218

    Article  CAS  PubMed  Google Scholar 

  99. Akabayashi A, Wahlestedt C, Alexander JT, Leibowitz SF (1994) Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Brain Res Mol Brain Res 21(1–2):55–61

    Article  CAS  PubMed  Google Scholar 

  100. Li AJ, Wiater MF, Oostrom MT, Smith BR, Wang Q, Dinh TT et al (2012) Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am J Physiol Regul Integr Comp Physiol 302(11):R1313–R1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu B, Kalra PS, Farmerie WG, Kalra SP (1999) Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology 140(6):2868–2875

    Article  CAS  PubMed  Google Scholar 

  102. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130(1):165–183

    Article  CAS  PubMed  Google Scholar 

  104. Greco CM, Sassone-Corsi P (2019) Circadian blueprint of metabolic pathways in the brain. Nat Rev Neurosci 20(2):71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hastings MH, Maywood ES, Brancaccio M (2019) The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology (Basel) 8(1). pii: E13. https://doi.org/10.3390/biology8010013

  106. Honma S, Ikeda M, Abe H, Tanahashi Y, Namihira M, Honma K et al (1998) Circadian oscillation of BMAL1, a partner of a mammalian clock gene clock, in rat suprachiasmatic nucleus. Biochem Biophys Res Commun 250(1):83–87

    Article  CAS  PubMed  Google Scholar 

  107. Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8(10):790–802

    Article  CAS  PubMed  Google Scholar 

  108. O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 217:67–103

    Article  CAS  Google Scholar 

  109. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280(5369):1564–1569

    Article  CAS  PubMed  Google Scholar 

  111. Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A 95(10):5474–5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS et al (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94(1):97–107

    Article  CAS  PubMed  Google Scholar 

  114. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    Article  CAS  PubMed  Google Scholar 

  115. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7):1055–1064

    Article  CAS  PubMed  Google Scholar 

  116. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855–867

    Article  CAS  PubMed  Google Scholar 

  117. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98(2):193–205

    Article  CAS  PubMed  Google Scholar 

  118. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96(21):12114–12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Horwitz BA, Gressel J, Malkin S, Epel BL (1985) Modified cryptochrome in vivo absorption in dim photosporulation mutants of Trichoderma. Proc Natl Acad Sci U S A 82(9):2736–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Griffin EA, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286(5440):768–771

    Article  CAS  PubMed  Google Scholar 

  121. Sponga F, Deitzer GF, Mancinelli AL (1986) Cryptochrome, phytochrome, and the photoregulation of anthocyanin production under blue light. Plant Physiol 82(4):952–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366(6451):162–166

    Article  CAS  PubMed  Google Scholar 

  123. Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30(5):851–861

    Article  CAS  PubMed  Google Scholar 

  124. Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8(5):653–658

    Article  CAS  PubMed  Google Scholar 

  125. Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 103(47):17696–17700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F et al (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25(7):2795–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H et al (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106–1118

    Article  CAS  PubMed  Google Scholar 

  128. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M et al (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308(5722):693–696

    Article  CAS  PubMed  Google Scholar 

  130. Kim JY, Kwak PB, Gebert M, Duong HA, Weitz CJ (2015) Purification and analysis of PERIOD protein complexes of the mammalian circadian clock. Methods Enzymol 551:197–210

    Article  CAS  PubMed  Google Scholar 

  131. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24(2):90–99

    Article  CAS  PubMed  Google Scholar 

  132. Ye R, Selby CP, Chiou YY, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A (2014) Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and period proteins in the mammalian circadian clock. Genes Dev 28(18):1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10(5):543–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. DeBruyne JP, Weaver DR, Reppert SM (2007) Peripheral circadian oscillators require CLOCK. Curr Biol 17(14):R538–R539

    Article  CAS  PubMed  Google Scholar 

  135. Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293(5529):506–509

    Article  CAS  PubMed  Google Scholar 

  136. Landgraf D, Wang LL, Diemer T, Welsh DK (2016) NPAS2 compensates for loss of CLOCK in peripheral circadian oscillators. PLoS Genet 12(2):e1005882. https://doi.org/10.1371/journal.pgen.1005882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105(7):877–889

    Article  CAS  PubMed  Google Scholar 

  138. Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLoS One 6(3):e17290. https://doi.org/10.1371/journal.pone.0017290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  CAS  PubMed  Google Scholar 

  140. Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D et al (2015) GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348(6242):1488–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187–192

    Article  CAS  PubMed  Google Scholar 

  142. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527–537

    Article  CAS  PubMed  Google Scholar 

  144. Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm 20(5):391–403

    Article  CAS  Google Scholar 

  145. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125–137

    Article  CAS  PubMed  Google Scholar 

  146. Bozek K, Relógio A, Kielbasa SM, Heine M, Dame C, Kramer A et al (2009) Regulation of clock-controlled genes in mammals. PLoS One 4(3):e4882. https://doi.org/10.1371/journal.pone.0004882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lehmann R, Machné R, Herzel H (2014) The structural code of cyanobacterial genomes. Nucleic Acids Res 42(14):8873–8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS et al (2017) Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170(4):664–677.e611. https://doi.org/10.1016/j.cell.2017.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2:R271–R277

    Google Scholar 

  150. Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci U S A 105(52):20746–20751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yoshii T, Hermann-Luibl C, Helfrich-Förster C (2016) Circadian light-input pathways in Drosophila. Commun Integr Biol 9(1):e1102805. https://doi.org/10.1080/19420889.2015.1102805

    Article  CAS  PubMed  Google Scholar 

  152. Tataroglu O, Emery P (2015) The molecular ticks of the Drosophila circadian clock. Curr Opin Insect Sci 7:51–57

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HM (2017) Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 74(6):1035–1059

    Article  CAS  PubMed  Google Scholar 

  154. Carmona-Alcocer V, Rohr KE, Joye DAM, Evans JA (2018) Circuit development in the master clock network of mammals. Eur J Neurosci. https://doi.org/10.1111/ejn.14259. [Epub ahead of print]

  155. Hegazi S, Lowden C, Rios Garcia J, Cheng AH, Obrietan K, Levine JD et al (2019) A symphony of signals: intercellular and intracellular signaling mechanisms underlying circadian timekeeping in mice and flies. Int J Mol Sci 20(9). pii: E2363. https://doi.org/10.3390/ijms20092363

  156. Kozlov A, Nagoshi E (2019) Decoding Drosophila circadian pacemaker circuit. Curr Opin Insect Sci 36:33–38

    Article  PubMed  Google Scholar 

  157. Artiushin G, Sehgal A (2017) The Drosophila circuitry of sleep-wake regulation. Curr Opin Neurobiol 4:243–250

    Article  CAS  Google Scholar 

  158. Cha J, Zhou M, Liu Y (2015) Methods to study molecular mechanisms of the Neurospora circadian clock. Methods Enzymol 551:137–151

    Article  CAS  PubMed  Google Scholar 

  159. Cha J, Zhou M, Liu Y (2015) Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54(2):150–156

    Article  CAS  PubMed  Google Scholar 

  160. Hurley J, Loros JJ, Dunlap JC (2015) Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol 551:29–52

    Article  CAS  PubMed  Google Scholar 

  161. Hurley JH, Dasgupta A, Andrews P, Crowell AM, Ringelberg C, Loros JJ et al (2015) A tool set for the genome-wide analysis of Neurospora crassa by RT-PCR. G3 (Bethesda) 5(10):2043–2049

    Article  CAS  Google Scholar 

  162. Jarabo P, Martin FA (2017) Neurogenetics of Drosophila circadian clock: expect the unexpected. J Neurogenet 31(4):250–265

    Article  CAS  PubMed  Google Scholar 

  163. Dubowy C, Sehgal A (2017) Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205(4):1373–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Franco DL, Frenkel L, Ceriani MF (2018) The underlying genetics of Drosophila circadian behaviors. Physiology (Bethesda) 33(1):50–62

    Google Scholar 

  165. He Q, Wu B, Price JL, Zhao Z (2017) Circadian rhythm neuropeptides in Drosophila: signals for normal circadian function and circadian neurodegenerative disease. Int J Mol Sci 18(4). pii: E886. https://doi.org/10.3390/ijms18040886

  166. Glossop NR, Lyons LC, Hardin PE (1999) Interlocked feedback loops within the Drosophila circadian oscillator. Science 286(5440):766–768

    Article  CAS  PubMed  Google Scholar 

  167. Reppert SM, Sauman I (1995) Period and timeless tango: a dance of two clock genes. Neuron 15(5):983–986

    Article  CAS  PubMed  Google Scholar 

  168. Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263(5153):1603–1606

    Article  CAS  PubMed  Google Scholar 

  169. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1):83–95

    Article  CAS  PubMed  Google Scholar 

  170. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Article  CAS  PubMed  Google Scholar 

  171. Abruzzi KC, Rodriguez J, Menet JS, Desrochers J, Zadina A, Luo W et al (2011) Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev 25(22):2374–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Menet JS, Abruzzi KC, Desrochers J, Rodriguez J, Rosbash M (2010) Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev 24(4):358–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A (2011) Reaction mechanism of Drosophila cryptochrome. Proc Natl Acad Sci U S A 108(2):516–521

    Article  CAS  PubMed  Google Scholar 

  174. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA et al (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5):681–692

    Article  CAS  PubMed  Google Scholar 

  175. Benito J, Houl JH, Roman GW, Hardin PE (2008) The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J Biol Rhythm 23(4):296–307

    Article  CAS  Google Scholar 

  176. Collins B, Mazzoni EO, Stanewsky R, Blau J (2006) Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 16(5):441–449

    Article  CAS  PubMed  Google Scholar 

  177. Buijs FN, León-Mercado L, Guzmán-Ruiz M, Guerrero-Vargas NN, Romo-Nava F, Buijs RM (2016) The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda) 31(3):170–181

    Google Scholar 

  178. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2(7):521–526

    Article  CAS  PubMed  Google Scholar 

  179. Yuan XS, Wei HH, Xu W, Wang L, Qu WM, Li RX et al (2018) Whole-brain monosynaptic afferent projections to the cholecystokinin neurons of the suprachiasmatic nucleus. Front Neurosci 12:807. https://doi.org/10.3389/fnins.2018.00807

    Article  PubMed  PubMed Central  Google Scholar 

  180. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC et al (2003) The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 464(1):36–48

    Article  PubMed  Google Scholar 

  182. Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177(1):17–26

    Article  CAS  PubMed  Google Scholar 

  183. Kalsbeek A, Yi CX, la Fleur SE, Buijs RM, Fliers E (2010) Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep. Int Rev Neurobiol 93:91–107

    Article  PubMed  Google Scholar 

  184. Ueyama T, Krout KE, Nguyen XV, Karpitskiy V, Kollert A, Mettenleiter TC et al (1999) Suprachiasmatic nucleus: a central autonomic clock. Nat Neurosci 2(12):1051–1053

    Article  CAS  PubMed  Google Scholar 

  185. LeSauter J, Romero P, Cascio M, Silver R (1997) Attachment site of grafted SCN influences precision of restored circadian rhythm. J Biol Rhythm 12(4):327–338

    Article  CAS  Google Scholar 

  186. Meyer-Bernstein EL, Morin LP (1999) Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neuroscience 92(1):267–279

    Article  CAS  PubMed  Google Scholar 

  187. Lehman MN, Lesauter J, Silver R (1998) Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle. J Comp Neurol 391(1):133–145

    Article  CAS  PubMed  Google Scholar 

  188. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7(6):1626–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. LeSauter J, Lehman MN, Silver R (1996) Restoration of circadian rhythmicity by transplants of SCN “micropunches”. J Biol Rhythm 11(2):163–171

    Article  CAS  Google Scholar 

  190. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci U S A 102(8):3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kaneko M, Hiroshige T, Shinsako J, Dallman MF (1980) Diurnal changes in amplification of hormone rhythms in the adrenocortical system. Am J Phys 239(3):R309–R316

    CAS  Google Scholar 

  192. Kaneko M, Kaneko K, Shinsako J, Dallman MF (1981) Adrenal sensitivity to adrenocorticotropin varies diurnally. Endocrinology 109(1):70–75

    Article  CAS  PubMed  Google Scholar 

  193. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4(2):163–173

    Article  CAS  PubMed  Google Scholar 

  194. Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427–440

    Article  CAS  PubMed  Google Scholar 

  195. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10(20):1291–1294

    Article  CAS  PubMed  Google Scholar 

  196. Reddy AB, Maywood ES (2007) Circadian rhythms: per2bations in the liver clock. Curr Biol 17(8):R292–R294

    Article  CAS  PubMed  Google Scholar 

  197. Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ et al (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45(6):1478–1488

    Article  CAS  PubMed  Google Scholar 

  198. So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci U S A 106(41):17582–17587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K et al (2005) Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 280(51):42036–42043

    Article  CAS  PubMed  Google Scholar 

  200. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ et al (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11(5):1535–1544

    Article  CAS  PubMed  Google Scholar 

  201. Mahoney MM, Ramanathan C, Hagenauer MH, Thompson RC, Smale L, Lee T (2009) Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus. Eur J Neurosci 30(8):1537–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H et al (2008) Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 105(52):20970–20975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10 (20):1291-1294

    Google Scholar 

  204. Rosenfeld P, Van Eekelen JA, Levine S, De Kloet ER (1988) Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res 470(1):119–127

    Article  CAS  PubMed  Google Scholar 

  205. Rosenfeld P, van Eekelen JA, Levine S, de Kloet ER (1993) Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 13(4):295–319

    Article  CAS  PubMed  Google Scholar 

  206. Caratti G, Iqbal M, Hunter L, Kim D, Wang P, Vonslow RM et al (2018) REVERBa couples the circadian clock to hepatic glucocorticoid action. J Clin Invest 128(10):4454–4471

    Article  PubMed  PubMed Central  Google Scholar 

  207. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24(4):345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wams EJ, Riede S, van der Laan I, Bulte TT, Hut RA (2017) Mechanisms of non-photic entrainment. In: Biological timekeeping: clocks, rhythms and behavior, 1st edn. Springer, New Delhi. ISBN-10: 9788132236863

    Google Scholar 

  209. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493

    Article  CAS  PubMed  Google Scholar 

  210. Cuninkova L, Brown SA (2008) Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann N Y Acad Sci 1129:358–370

    Article  PubMed  Google Scholar 

  211. Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20(24):7128–7136

    Article  PubMed  PubMed Central  Google Scholar 

  212. Krieger DT, Hauser H, Krey LC (1977) Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science 197(4301):398–399

    Article  CAS  PubMed  Google Scholar 

  213. Stephan FK, Swann JM, Sisk CL (1979) Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav Neural Biol 25(4):545–554

    Article  CAS  PubMed  Google Scholar 

  214. Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25(3):346–363

    Article  CAS  PubMed  Google Scholar 

  215. Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythm 17(4):284–292

    Article  Google Scholar 

  216. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M et al (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6(3):269–278

    Article  CAS  PubMed  Google Scholar 

  217. Pezuk P, Mohawk JA, Yoshikawa T, Sellix MT, Menaker M (2010) Circadian organization is governed by extra-SCN pacemakers. J Biol Rhythm 25(6):432–441

    Article  Google Scholar 

  218. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T (2004) Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 55(1 Pt 2):137–154

    CAS  PubMed  Google Scholar 

  219. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Mukherji A, Kobiita A, Chambon P (2015) Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A 112(48):E6683–E6690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy MF et al (2015) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 112(48):E6691–E6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Asher G, Sassone-Corsi P (2015) Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161(1):84–92

    Article  CAS  PubMed  Google Scholar 

  224. Kentish SJ, Vincent AD, Kennaway DJ, Wittert GA, Page AJ (2016) High-fat diet-induced obesity ablates gastric vagal afferent circadian rhythms. J Neurosci 36(11):3199–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6(5):414–421

    Article  CAS  PubMed  Google Scholar 

  226. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308(5724):1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Meyer-Kovac J, Kolbe I, Ehrhardt L, Leliavski A, Husse J, Salinas G et al (2017) Hepatic gene therapy rescues high-fat diet responses in circadian. Mol Metab 6(6):512–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. de Assis MA, Kupek E, Nahas MV, Bellisle F (2003) Food intake and circadian rhythms in shift workers with a high workload. Appetite 40(2):175–183

    Article  PubMed  Google Scholar 

  229. de Assis MA, Nahas MV, Bellisle F, Kupek E (2003) Meals, snacks and food choices in Brazilian shift workers with high energy expenditure. J Hum Nutr Diet 16(4):283–289

    Article  PubMed  Google Scholar 

  230. Manenschijn L, van Kruysbergen RG, de Jong FH, Koper JW, van Rossum EF (2011) Shift work at young age is associated with elevated long-term cortisol levels and body mass index. J Clin Endocrinol Metab 96(11):E1862–E1865

    Article  CAS  PubMed  Google Scholar 

  231. Schiavo-Cardozo D, Lima MM, Pareja JC, Geloneze B (2013) Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clin Endocrinol 79(6):807–811

    Article  CAS  Google Scholar 

  232. Waterhouse J, Nevill A, Edwards B, Godfrey R, Reilly T (2003) The relationship between assessments of jet lag and some of its symptoms. Chronobiol Int 20(6):1061–1073

    Article  PubMed  Google Scholar 

  233. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A 101(28):10434–10439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hales CM, Carroll MD, Fryar CD, Ogden CL (2017) Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief 288:1–8

    Google Scholar 

  235. Mendola ND, Chen TC, Gu Q, Eberhardt MS, Saydah S (2018) Prevalence of Total, diagnosed, and undiagnosed diabetes among adults: United States, 2013-2016. NCHS Data Brief 319:1–8

    Google Scholar 

  236. Gibson EM, Williams WP, Kriegsfeld LJ (2009) Aging in the circadian system: considerations for health, disease prevention and longevity. Exp Gerontol 44(1–2):51–56

    Article  PubMed  Google Scholar 

  237. Weinert D (2000) Age-dependent changes of the circadian system. Chronobiol Int 17(3):261–283

    Article  CAS  PubMed  Google Scholar 

  238. Mattis J, Sehgal A (2016) Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol Metab 27(4):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zuurbier LA, Luik AI, Hofman A, Franco OH, Van Someren EJ, Tiemeier H (2015) Fragmentation and stability of circadian activity rhythms predict mortality: the Rotterdam study. Am J Epidemiol 181(1):54–63

    Article  PubMed  Google Scholar 

  240. Froy O (2011) Circadian rhythms, aging, and life span in mammals. Physiology (Bethesda) 26(4):225–235

    CAS  Google Scholar 

  241. Nakamura TJ, Takasu NN, Nakamura W (2016) The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci 66(5):367–374

    Article  CAS  PubMed  Google Scholar 

  242. Weinert H, Weinert D, Schurov I, Maywood ES, Hastings MH (2001) Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice. Chronobiol Int 18(3):559–565

    Article  CAS  PubMed  Google Scholar 

  243. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A 99(16):10801–10806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Aujard F, Cayetanot F, Bentivoglio M, Perret M (2006) Age-related effects on the biological clock and its behavioral output in a primate. Chronobiol Int 23(1–2):451–460

    Article  CAS  PubMed  Google Scholar 

  245. Youngstedt SD (2001) Ceiling and floor effects in sleep research. Sleep Med Rev 5(1):79–81

    Article  PubMed  Google Scholar 

  246. Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5(1):33–51

    Article  CAS  PubMed  Google Scholar 

  247. Yoon IY, Kripke DF, Elliott JA, Youngstedt SD, Rex KM, Hauger RL (2003) Age-related changes of circadian rhythms and sleep-wake cycles. J Am Geriatr Soc 51(8):1085–1091

    Article  PubMed  Google Scholar 

  248. Pagani L, Schmitt K, Meier F, Izakovic J, Roemer K, Viola A et al (2011) Serum factors in older individuals change cellular clock properties. Proc Natl Acad Sci U S A 108(17):7218–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74(2):246–260

    Article  CAS  PubMed  Google Scholar 

  250. Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS et al (2011) Age-related decline in circadian output. J Neurosci 31(28):10201–10205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Nygård M, Hill RH, Wikström MA, Kristensson K (2005) Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 65(2):149–154

    Article  PubMed  Google Scholar 

  252. Satinoff E, Li H, Tcheng TK, Liu C, McArthur AJ, Medanic M et al (1993) Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? Am J Phys 265(5 Pt 2):R1216–R1222

    CAS  Google Scholar 

  253. Watanabe A, Shibata S, Watanabe S (1995) Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Res 695(2):237–239

    Article  CAS  PubMed  Google Scholar 

  254. Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythm 18(2):159–169

    Article  CAS  Google Scholar 

  255. Nakamura TJ, Nakamura W, Tokuda IT, Ishikawa T, Kudo T, Colwell CS et al (2015) Age-related changes in the circadian system unmasked by constant conditions. eNeuro 2(4). pii: ENEURO.0064-15.2015. https://doi.org/10.1523/ENEURO.0064-15.2015

  256. Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31

    Article  CAS  PubMed  Google Scholar 

  257. Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T et al (2001) Circadian profile of per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66(6):1133–1139

    Article  CAS  PubMed  Google Scholar 

  258. Nakajima A, Aoyama Y, Shin EJ, Nam Y, Kim HC, Nagai T et al (2015) Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD). Behav Brain Res 289:69–77

    Article  CAS  PubMed  Google Scholar 

  259. Eghlidi D, Luna SL, Brown D, Garyfallou V, Kohama S, Urbanski HF (2018) Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 61(2):57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Coria-Lucero CD, Golini RS, Ponce IT, Deyurka N, Anzulovich AC, Delgado SM et al (2016) Rhythmic Bdnf and TrkB expression patterns in the prefrontal cortex are lost in aged rats. Brain Res 1653:51–58

    Article  CAS  PubMed  Google Scholar 

  261. Duncan MJ, Herron JM, Hill SA (2001) Aging selectively suppresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res Mol Brain Res 87(2):196–203

    Article  CAS  PubMed  Google Scholar 

  262. Duncan MJ, Prochot JR, Cook DH, Tyler Smith J, Franklin KM (2013) Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res 1491:44–53

    Article  CAS  PubMed  Google Scholar 

  263. Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E et al (2016) Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A 113(1):206–211

    Article  CAS  PubMed  Google Scholar 

  264. Benloucif S, Masana MI, Dubocovich ML (1997) Light-induced phase shifts of circadian activity rhythms and immediate early gene expression in the suprachiasmatic nucleus are attenuated in old C3H/HeN mice. Brain Res 747(1):34–42

    Article  CAS  PubMed  Google Scholar 

  265. Duffy JF, Zeitzer JM, Czeisler CA (2007) Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging 28(5):799–807

    Article  PubMed  Google Scholar 

  266. Zhang Y, Takahashi JS, Turek FW (1996) Critical period for cycloheximide blockade of light-induced phase advances of the circadian locomotor activity rhythm in golden hamsters. Brain Res 740(1–2):285–290

    Article  CAS  PubMed  Google Scholar 

  267. Yan SS, Wang W (2016) The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol 9(7):1066–1074

    PubMed  PubMed Central  Google Scholar 

  268. Brøndsted AE, Sander B, Haargaard B, Lund-Andersen H, Jennum P, Gammeltoft S et al (2015) The effect of cataract surgery on circadian photoentrainment: a randomized trial of blue-blocking versus neutral intraocular lenses. Ophthalmology 122(10):2115–2124

    Article  PubMed  Google Scholar 

  269. Brøndsted AE, Haargaard B, Sander B, Lund-Andersen H, Jennum P, Kessel L (2017) The effect of blue-blocking and neutral intraocular lenses on circadian photoentrainment and sleep one year after cataract surgery. Acta Ophthalmol 95(4):344–351

    Article  PubMed  Google Scholar 

  270. Erichsen JH, Brøndsted AE, Kessel L (2015) Effect of cataract surgery on regulation of circadian rhythms. J Cataract Refract Surg 41(9):1997–2009

    Article  PubMed  Google Scholar 

  271. Ayaki M, Muramatsu M, Negishi K, Tsubota K (2013) Improvements in sleep quality and gait speed after cataract surgery. Rejuvenation Res 16(1):35–42

    Article  PubMed  PubMed Central  Google Scholar 

  272. Ayaki M, Negishi K, Tsubota K (2014) Rejuvenation effects of cataract surgery with ultraviolet blocking intra-ocular lens on circadian rhythm and gait speed. Rejuvenation Res 17(4):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Witting W, Mirmiran M, Bos NP, Swaab DF (1993) Effect of light intensity on diurnal sleep-wake distribution in young and old rats. Brain Res Bull 30(1–2):157–162

    Article  CAS  PubMed  Google Scholar 

  274. Gomez D, Barbosa A, Théry M, Aujard F, Perret M (2012) Age affects photoentrainment in a nocturnal primate. J Biol Rhythm 27(2):164–171

    Article  Google Scholar 

  275. Duffy JF, Zitting KM, Chinoy ED (2015) Aging and circadian rhythms. Sleep Med Clin 10(4):423–434

    Article  PubMed  PubMed Central  Google Scholar 

  276. Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Invest 127(2):437–446

    Article  PubMed  PubMed Central  Google Scholar 

  277. Farajnia S, Michel S, Deboer T, van der Leest HT, Houben T, Rohling JH et al (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 32(17):5891–5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Allen CN, Nitabach MN, Colwell CS (2017) Membrane currents, gene expression, and circadian clocks. Cold Spring Harb Perspect Biol 9(5). pii: a027714. https://doi.org/10.1101/cshperspect.a027714

  279. Kalló I, Kalamatianos T, Piggins HD, Coen CW (2004) Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. J Neuroendocrinol 16(9):758–766

    Article  PubMed  CAS  Google Scholar 

  280. Kawakami F, Okamura H, Tamada Y, Maebayashi Y, Fukui K, Ibata Y (1997) Loss of day-night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci Lett 222(2):99–102

    Article  CAS  PubMed  Google Scholar 

  281. Krajnak K, Kashon ML, Rosewell KL, Wise PM (1998) Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats. J Neurosci 18(12):4767–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sellix MT, Evans JA, Leise TL, Castanon-Cervantes O, Hill DD, DeLisser P et al (2012) Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci 32(46):16193–16202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Cai A, Scarbrough K, Hinkle DA, Wise PM (1997) Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. Am J Phys 273(5):R1764–R1770

    Article  CAS  Google Scholar 

  284. van Gool WA, Witting W, Mirmiran M (1987) Age-related changes in circadian sleep-wakefulness rhythms in male rats isolated from time cues. Brain Res 413(2):384–387

    Article  PubMed  Google Scholar 

  285. Viswanathan N, Davis FC (1995) Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res 686(1):10–16

    Article  CAS  PubMed  Google Scholar 

  286. Cayetanot F, Bentivoglio M, Aujard F (2005) Arginine-vasopressin polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate. Eur J Neurosci 22 (4): 902-910

    Google Scholar 

  287. Umezaki Y, Yoshii T, Kawaguchi T, Helfrich-Förster C, Tomioka K (2012) Pigment-dispersing factor is involved in age-dependent rhythm changes in Drosophila melanogaster. J Biol Rhythm 27(6):423–432

    Article  CAS  Google Scholar 

  288. Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC (2016) Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS One 11(12):e0168651. https://doi.org/10.1371/journal.pone.0168651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Schibler U, Gotic I, Saini C, Gos P, Curie T, Emmenegger Y et al (2015) Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol 80:223–232

    Article  PubMed  Google Scholar 

  290. Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29(3):471–477

    Article  PubMed  Google Scholar 

  291. Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16(21):R914–R916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Anisimov VN, Baturin DA, Popovich IG, Zabezhinski MA, Manton KG, Semenchenko AV et al (2004) Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice. Int J Cancer 111(4):475–479

    Article  CAS  PubMed  Google Scholar 

  293. Vinogradova IA, Anisimov VN, Bukalev AV, Semenchenko AV, Zabezhinski MA (2009) Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging (Albany NY) 1(10):855–865

    Article  CAS  Google Scholar 

  294. Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M (2014) Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol 55:70–79

    Article  CAS  PubMed  Google Scholar 

  295. Tahara Y, Takatsu Y, Shiraishi T, Kikuchi Y, Yamazaki M, Motohashi H et al (2017) Age-related circadian disorganization caused by sympathetic dysfunction in peripheral clock regulation. NPJ Aging Mech Dis 3:16030. https://doi.org/10.1038/npjamd.2016.30

    Article  PubMed  PubMed Central  Google Scholar 

  296. Sutton GM, Ptitsyn AA, Floyd ZE, Yu G, Wu X, Hamel K et al (2013) Biological aging alters circadian mechanisms in murine adipose tissue depots. Age (Dordr) 35(3):533–547

    Article  CAS  Google Scholar 

  297. Sandu C, Liu T, Malan A, Challet E, Pévet P, Felder-Schmittbuhl MP (2015) Circadian clocks in rat skin and dermal fibroblasts: differential effects of aging, temperature and melatonin. Cell Mol Life Sci 72(11):2237–2248

    Article  CAS  PubMed  Google Scholar 

  298. Ando H, Ushijima K, Kumazaki M, Takamura T, Yokota N, Saito T et al (2010) Influence of age on clock gene expression in peripheral blood cells of healthy women. J Gerontol A Biol Sci Med Sci 65(1):9–13

    Article  PubMed  CAS  Google Scholar 

  299. Luo W, Chen WF, Yue Z, Chen D, Sowcik M, Sehgal A et al (2012) Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell 11(3):428–438

    Article  CAS  PubMed  Google Scholar 

  300. Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM (2012) Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 29(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Giebultowicz JM (2001) Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc Lond Ser B Biol Sci 356(1415):1791–1799

    Article  CAS  Google Scholar 

  302. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278(5343):1632–1635

    Article  CAS  PubMed  Google Scholar 

  303. Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22(21):9305–9319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12(7):551–557

    Article  CAS  PubMed  Google Scholar 

  305. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Article  CAS  PubMed  Google Scholar 

  306. Giebultowicz JM (2018) Circadian regulation of metabolism and healthspan in Drosophila. Free Radic Biol Med 119:62–68

    Article  CAS  PubMed  Google Scholar 

  307. Krishnan N, Davis AJ, Giebultowicz JM (2008) Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374(2):299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B et al (2016) Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A 113(12):E1673–E1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, Sena LA et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417. https://doi.org/10.1126/science.1243417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Klichko VI, Chow ES, Kotwica-Rolinska J, Orr WC, Giebultowicz JM, Radyuk SN (2015) Aging alters circadian regulation of redox in Drosophila. Front Genet 6:83. https://doi.org/10.3389/fgene.2015.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC et al (2012) Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS One 7(11):e50454. https://doi.org/10.1371/journal.pone.0050454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Gong C, Li C, Qi X, Song Z, Wu J, Hughes ME, Li X (2015) The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver. Chronobiol Int 32(9):1254–1263

    Article  CAS  PubMed  Google Scholar 

  313. Vinod C, Jagota A (2016) Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Biogerontology 17(5–6):859–871

    Article  CAS  PubMed  Google Scholar 

  314. Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythm 13(6):471–478

    Article  CAS  Google Scholar 

  315. Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz JM (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY) 1(11):937–948

    Article  CAS  Google Scholar 

  316. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50

    Article  CAS  PubMed  Google Scholar 

  317. Lee CC (2005) The circadian clock and tumor suppression by mammalian period genes. Methods Enzymol 393:852–861

    Article  CAS  PubMed  Google Scholar 

  318. Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz JM (2012) Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 45(3):1129–1135

    Article  CAS  PubMed  Google Scholar 

  319. Dubrovsky YV, Samsa WE, Kondratov RV (2010) Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging (Albany NY) 2(12):936–944

    Article  CAS  Google Scholar 

  320. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20(14):1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Ali AA, Schwarz-Herzke B, Stahr A, Prozorovski T, Aktas O, von Gall C (2015) Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging (Albany NY) 7(6):435–449

    Article  CAS  Google Scholar 

  322. Musiek ES (2015) Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol 6:29. https://doi.org/10.3389/fphar.2015.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y et al (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 123(12):5389–5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Banks G, Nolan PM, Peirson SN (2016) Reciprocal interactions between circadian clocks and aging. Mamm Genome 27(7–8):332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL et al (2006) Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314(5803):1304–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES et al (2016) Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 8(324):324ra316. https://doi.org/10.1126/scitranslmed.aad3305

    Article  CAS  Google Scholar 

  327. Li JC, Xu F (1997) Influences of light-dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin. Biol Signals 6(2):77–89

    Article  PubMed  Google Scholar 

  328. Cuesta M, Boudreau P, Dubeau-Laramée G, Cermakian N, Boivin DB (2016) Simulated night shift disrupts circadian rhythms of immune functions in humans. J Immunol 196(6):2466–2475

    Article  CAS  PubMed  Google Scholar 

  329. Li J, Terry EE, Fejer E, Gamba D, Hartmann N, Logsdon J et al (2017) Achilles is a circadian clock-controlled gene that regulates immune function in Drosophila. Brain Behav Immun 61:127–136

    Article  CAS  PubMed  Google Scholar 

  330. Li J, Yu RY, Emran F, Chen BE, Hughes ME (2019) Achilles-mediated and sex-specific regulation of circadian mRNA rhythms in drosophila. J Biol Rhythm 34(2):131–143

    Article  Google Scholar 

  331. Libert S, Bonkowski MS, Pointer K, Pletcher SD, Guarente L (2012) Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11(5):794–800

    Article  CAS  PubMed  Google Scholar 

  332. Park N, Cheon S, Son GH, Cho S, Kim K (2012) Chronic circadian disturbance by a shortened light-dark cycle increases mortality. Neurobiol Aging 33(6):1122.e1111–1122.e1122

    Article  Google Scholar 

  333. Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythm 13(5):430–436

    Article  CAS  Google Scholar 

  334. Oklejewicz M, Daan S (2002) Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus. J Biol Rhythm 17(3):210–216

    Article  Google Scholar 

  335. Aschoff J, Fatranská M, Giedke H, Doerr P, Stamm D, Wisser H (1971) Human circadian rhythms in continuous darkness: entrainment by social cues. Science 171(3967):213–215

    Article  CAS  PubMed  Google Scholar 

  336. Aschoff J, von Saint PU, Wever R (1971) Lifetime of flies under influence of time displacement. Naturwissenschaften 58(11):574. https://doi.org/10.1007/bf00598736

    Article  CAS  PubMed  Google Scholar 

  337. Boomgarden AC, Sagewalker GD, Shah AC, Haider SD, Patel P, Wheeler HE et al (2019) Chronic circadian misalignment results in reduced longevity and large-scale changes in gene expression in Drosophila. BMC Genomics 20(1):14. https://doi.org/10.1186/s12864-018-5401-7

    Article  PubMed  PubMed Central  Google Scholar 

  338. Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci U S A 69(6):1537–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Noordam R, Jansen SW, Akintola AA, Oei NY, Maier AB, Pijl H et al (2012) Familial longevity is marked by lower diurnal salivary cortisol levels: the Leiden Longevity Study. PLoS One 7(2):e31166. https://doi.org/10.1371/journal.pone.0031166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. van den Berg R, Noordam R, Kooijman S, Jansen SWM, Akintola AA, Slagboom PE et al (2017) Familial longevity is characterized by high circadian rhythmicity of serum cholesterol in healthy elderly individuals. Aging Cell 16(2):237–243

    Article  PubMed  CAS  Google Scholar 

  341. Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M et al (1996) Glucose tolerance and insulin action in healthy centenarians. Am J Phys 270(5 Pt 1):E890–E894

    CAS  Google Scholar 

  342. Wijsman CA, van Opstal AM, Kan HE, Maier AB, Westendorp RG, Slagboom PE et al (2012) Proton magnetic resonance spectroscopy shows lower intramyocellular lipid accumulation in middle-aged subjects predisposed to familial longevity. Am J Physiol Endocrinol Metab 302(3):E344–E348

    Article  CAS  PubMed  Google Scholar 

  343. Gutman R, Genzer Y, Chapnik N, Miskin R, Froy O (2011) Long-lived mice exhibit 24 h locomotor circadian rhythms at young and old age. Exp Gerontol 46(7):606–609

    Article  PubMed  Google Scholar 

  344. Cho E, Lee KJ, Seo JW, Byun CJ, Chung SJ, Suh DC et al (2012) Neuroprotection by urokinase plasminogen activator in the hippocampus. Neurobiol Dis 46(1):215–224

    Article  CAS  PubMed  Google Scholar 

  345. Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25(8):450–455

    Article  CAS  PubMed  Google Scholar 

  346. Zhang Y, Pothakos K, Tsirka SA (2005) Extracellular proteases: biological and behavioral roles in the mammalian central nervous system. Curr Top Dev Biol 66:161–188

    Article  CAS  PubMed  Google Scholar 

  347. Kant GJ, Mougey EH, Meyerhoff JL (1986) Diurnal variation in neuroendocrine response to stress in rats: plasma ACTH, beta-endorphin, beta-LPH, corticosterone, prolactin and pituitary cyclic AMP responses. Neuroendocrinology 43(3):383–390

    Article  CAS  PubMed  Google Scholar 

  348. Torrellas A, Guaza C, Borrell J, Borrell S (1981) Adrenal hormones and brain catecholamines responses to morning and afternoon immobilization stress in rats. Physiol Behav 26(1):129–133

    Article  CAS  PubMed  Google Scholar 

  349. Cano P, Cardinali DP, Spinedi E, Esquifino AI (2008) Effect of aging on 24-hour pattern of stress hormones and leptin in rats. Life Sci 83(3–4):142–148

    Article  CAS  PubMed  Google Scholar 

  350. Cano P, Jiménez-Ortega V, Larrad A, Reyes Toso CF, Cardinali DP, Esquifino AI (2008) Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33(2):118–125

    Article  CAS  PubMed  Google Scholar 

  351. Korkushko OV, Lapin BA, Goncharova ND, Khavinson VK, Shatilo VB, Vengerin AA et al (2007) Normalizing effect of the pineal gland peptides on the daily melatonin rhythm in old monkeys and elderly people. Adv Gerontol 20(1):74–85

    CAS  PubMed  Google Scholar 

  352. Strahler J, Berndt C, Kirschbaum C, Rohleder N (2010) Aging diurnal rhythms and chronic stress: distinct alteration of diurnal rhythmicity of salivary alpha-amylase and cortisol. Biol Psychol 84(2):248–256

    Article  PubMed  Google Scholar 

  353. Strahler J, Mueller A, Rosenloecher F, Kirschbaum C, Rohleder N (2010) Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology 47(3):587–595

    Article  PubMed  Google Scholar 

  354. McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107(5):567–578

    Article  CAS  PubMed  Google Scholar 

  355. McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH et al (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31(1):86–95

    Article  CAS  PubMed  Google Scholar 

  356. Hardeland R, Coto-Montes A, Poeggeler B (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20(6):921–962

    Article  CAS  PubMed  Google Scholar 

  357. Patel SA, Velingkaar NS, Kondratov RV (2014) Transcriptional control of antioxidant defense by the circadian clock. Antioxid Redox Signal 20(18):2997–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Xu YQ, Zhang D, Jin T, Cai DJ, Wu Q, Lu Y et al (2012) Diurnal variation of hepatic antioxidant gene expression in mice. PLoS One 7(8):e44237. https://doi.org/10.1371/journal.pone.0044237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK et al (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22(4):709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Yuan G, Hua B, Cai T, Xu L, Li E, Huang Y et al (2017) Clock mediates liver senescence by controlling ER stress. Aging (Albany NY) 9(12):2647–2665

    Article  CAS  Google Scholar 

  361. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277(2):1531–1537

    Article  CAS  PubMed  Google Scholar 

  362. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24(23):10161–10168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  364. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Stern AL, Naidoo N (2015) Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. Springerplus 4:25. https://doi.org/10.1186/s40064-014-0777-6

    Article  PubMed  PubMed Central  Google Scholar 

  366. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–2427

    Article  CAS  PubMed  Google Scholar 

  367. Butler R (2010) National Research Council (US) Center for Economic, Governance, and International Studies. Grand challenges of our aging society: workshop summary. Washington (DC): Enhancing Healthy Aging. National Academies Press (US) 3. https://www.ncbi.nlm.nih.gov/books/NBK220195/

  368. Bélanger PM (1996) Circadian rhythms in hepatic biotransformation of drugs. Pathol Biol (Paris) 44(6):564–570

    Google Scholar 

  369. Mailloux A, Benstaali C, Bogdan A, Auzéby A, Touitou Y (1999) Body temperature and locomotor activity as marker rhythms of aging of the circadian system in rodents. Exp Gerontol 34(6):733–740

    Article  CAS  PubMed  Google Scholar 

  370. Touitou Y, Haus E (1994) Aging of the human endocrine and neuroendocrine time structure. Ann N Y Acad Sci 719:378–397

    Article  CAS  PubMed  Google Scholar 

  371. Carlsson A, Serin F (1950) Time of day as a factor influencing the toxicity of nikethamide. Acta Pharmacol Toxicol (Copenh) 6(2):181–186

    Article  CAS  Google Scholar 

  372. Carlsson A, Serin F (1950) The toxicity of nikethamide at different times of the day. Acta Pharmacol Toxicol (Copenh) 6(2):187–193

    Article  CAS  Google Scholar 

  373. Haus E, Halberg F (1959) 24-hour rhythm in susceptibility of C mice to a toxic dose of ethanol. J Appl Physiol 14:878–880

    Article  CAS  PubMed  Google Scholar 

  374. Scheving LE, Vedral DF, Pauly JE (1968) Daily circadian rhythm in rats to D-amphetamine sulphate: effect of blinding and continuous illumination on the rhythm. Nature 219(5154):621–622

    Article  CAS  PubMed  Google Scholar 

  375. Hirst M, Kavaliers M, Teskey GC (1984) Age and day-night changes in clonidine-induced analgesia in mice. Can J Physiol Pharmacol 62(9):1102–1105

    Article  CAS  PubMed  Google Scholar 

  376. Kavaliers M, Hirst M (1986) Aging and day-night rhythms in feeding in mice: effects of the putative sigma opiate agonist, N-allylnormetazocine (SKF-10,047). Neurobiol Aging 7(3):179–183

    Article  CAS  PubMed  Google Scholar 

  377. Kavaliers M, Hirst M, Teskey GC (1984) Aging and daily rhythms of analgesia in mice: effects of natural illumination and twilight. Neurobiol Aging 5(2):111–114

    Article  CAS  PubMed  Google Scholar 

  378. Yehuda S, Carasso RL (1983) Changes in circadian rhythms of thermoregulation and motor activity in rats as a function of aging: effects of d-amphetamine and alpha-MSH. Peptides 4(6):865–869

    Article  CAS  PubMed  Google Scholar 

  379. Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (1994) Effects of aging on acute toxicity of nicotine in rats. Pharmacol Toxicol 75(1):1–6

    Article  CAS  PubMed  Google Scholar 

  380. Cherry KE, Morton MR (1989) Drug sensitivity in older adults: the role of physiologic and pharmacokinetic factors. Int J Aging Hum Dev 28(3):159–174

    Article  CAS  PubMed  Google Scholar 

  381. Dowling GJ, Weiss SR, Condon TP (2008) Drugs of abuse and the aging brain. Neuropsychopharmacology 33(2):209–218

    Article  CAS  PubMed  Google Scholar 

  382. De Nobrega AK, Lyons LC (2016) Circadian modulation of alcohol-induced sedation and recovery in male and female drosophila. J Biol Rhythm 31(2):142–160

    Article  CAS  Google Scholar 

  383. De Nobrega AK, Mellers AP, Lyons LC (2017) Aging and circadian dysfunction increase alcohol sensitivity and exacerbate mortality in Drosophila melanogaster. Exp Gerontol 97:49–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. Van der Linde K, Lyons LC (2011) Circadian modulation of acute alcohol sensitivity but not acute tolerance in Drosophila. Chronobiol Int 28(5):397–406

    Article  PubMed  CAS  Google Scholar 

  385. Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2016) Alcohol use disorder and mortality across the lifespan: a longitudinal cohort and co-relative analysis. JAMA Psychiat 73(6):575–581

    Article  Google Scholar 

  386. Solanas G, Peixoto FO, Perdiguero E, Jardí M, Ruiz-Bonilla V, Datta D et al (2017) Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170(4):678–692.e620

    Article  CAS  PubMed  Google Scholar 

  387. Kuintzle RC, Chow ES, Westby TN, Gvakharia BO, Giebultowicz JM, Hendrix DA (2017) Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nat Commun 8:14529. https://doi.org/10.1038/ncomms14529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80(19):1778–1783

    Article  PubMed  PubMed Central  Google Scholar 

  389. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW et al (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis 4:21. https://doi.org/10.1038/s41531-018-0058-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) World Alzheimer Report 2015-The Global Impact of Dementia, An analysis of prevalence, incidence, cost and trends. https://www.alz.co.uk/research/worldalzheimerreport2015summary.pdf

  391. Satlin A, Volicer L, Stopa EG, Harper D (1995) Circadian locomotor activity and core-body temperature rhythms in Alzheimer’s disease. Neurobiol Aging 16(5):765–771

    Article  CAS  PubMed  Google Scholar 

  392. Ancoli-Israel S, Klauber MR, Jones DW, Kripke DF, Martin J, Mason W et al (1997) Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep 20(1):18–23

    Article  CAS  PubMed  Google Scholar 

  393. Harper DG, Volicer L, Stopa EG, McKee AC, Nitta M, Satlin A (2005) Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry 13(5):359–368

    Article  PubMed  Google Scholar 

  394. Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry 27(6):563–572

    Article  CAS  PubMed  Google Scholar 

  395. Canevelli M, Valletta M, Trebbastoni A, Sarli G, D’Antonio F, Tariciotti L et al (2016) Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches. Front Med (Lausanne) 3:73. https://doi.org/10.3389/fmed.2016.00073

    Article  Google Scholar 

  396. Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A (2001) Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry 158(5):704–711

    Article  CAS  PubMed  Google Scholar 

  397. Uchida K, Okamoto N, Ohara K, Morita Y (1996) Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res 717(1–2):154–159

    Article  CAS  PubMed  Google Scholar 

  398. Hatfield CF, Herbert J, van Someren EJ, Hodges JR, Hastings MH (2004) Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain 127(Pt 5):1061–1074

    Article  CAS  PubMed  Google Scholar 

  399. Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythm 26(2):160–170

    Article  Google Scholar 

  400. Cronin P, McCarthy MJ, Lim ASP, Salmon DP, Galasko D, Masliah E et al (2017) Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimers Dement 13(6):689–700

    Article  PubMed  Google Scholar 

  401. Baker E, Sims R, Leonenko G, Frizzati A, Harwood JC, Grozeva D et al (2019) Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer’s disease. PLoS One 14(7):e0218111. https://doi.org/10.1371/journal.pone.0218111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Creese J, Bédard M, Brazil K, Chambers L (2008) Sleep disturbances in spousal caregivers of individuals with Alzheimer’s disease. Int Psychogeriatr 20(1):149–161

    Article  PubMed  Google Scholar 

  403. Hood S, Cassidy P, Cossette MP, Weigl Y, Verwey M, Robinson B et al (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci 30(42):14046–14058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Mattam U, Jagota A (2015) Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16(1):109–123

    Article  CAS  PubMed  Google Scholar 

  405. Gu Z, Wang B, Zhang YB, Ding H, Zhang Y, Yu J et al (2015) Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci Rep 5:15891. https://doi.org/10.1038/srep15891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Lou F, Li M, Luo X, Ren Y (2018) CLOCK 3111T/C variant correlates with motor fluctuation and sleep disorders in Chinese patients with Parkinson’s disease. Parkinsons Dis 2018:4670380. https://doi.org/10.1155/2018/4670380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Adler P, Mayne J, Walker K, Ning Z, Figeys D (2019) Therapeutic targeting of casein kinase 1δ/ε in an Alzheimer’s disease mouse model. J Proteome Res 18(9):3383–3393

    Article  CAS  PubMed  Google Scholar 

  408. Maiese K (2014) Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 9(15):1413–1417

    Article  PubMed  PubMed Central  Google Scholar 

  409. Maiese K (2014) Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 46(8):587–596

    Article  CAS  PubMed  Google Scholar 

  410. Maiese K (2017) Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 14(3):299–304

    CAS  PubMed  PubMed Central  Google Scholar 

  411. Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YS (2018) Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol 75(5):582–590

    Article  PubMed  Google Scholar 

  412. Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G et al (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140(8):2104–2111

    Article  PubMed  PubMed Central  Google Scholar 

  413. Sprecher KE, Koscik RL, Carlsson CM, Zetterberg H, Blennow K, Okonkwo OC et al (2017) Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89(5):445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Gao J, Huang X, Park Y, Hollenbeck A, Blair A, Schatzkin A et al (2011) Daytime napping, nighttime sleeping, and Parkinson disease. Am J Epidemiol 173(9):1032–1038

    Article  PubMed  PubMed Central  Google Scholar 

  415. Tranah GJ, Blackwell T, Stone KL, Ancoli-Israel S, Paudel ML, Ensrud KE et al (2011) Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol 70(5):722–732

    Article  PubMed  PubMed Central  Google Scholar 

  416. Walsh CM, Blackwell T, Tranah GJ, Stone KL, Ancoli-Israel S, Redline S et al (2014) Weaker circadian activity rhythms are associated with poorer executive function in older women. Sleep 37(12):2009–2016

    Article  PubMed  PubMed Central  Google Scholar 

  417. Rogers-Soeder TS, Blackwell T, Yaffe K, Ancoli-Israel S, Redline S, Cauley JA et al (2018) Rest-activity rhythms and cognitive decline in older men: the osteoporotic fractures in men sleep study. J Am Geriatr Soc 66(11):2136–2143

    Article  PubMed  PubMed Central  Google Scholar 

  418. Bokenberger K, Ström P, Dahl Aslan AK, Åkerstedt T, Pedersen NL (2017) Shift work and cognitive aging: a longitudinal study. Scand J Work Environ Health 43(5):485–493

    Article  PubMed  Google Scholar 

  419. Bokenberger K, Ström P, Dahl Aslan AK, Johansson AL, Gatz M, Pedersen NL et al (2017) Association between sleep characteristics and incident dementia accounting for baseline cognitive status: a prospective population-based study. J Gerontol A Biol Sci Med Sci 72(1):134–139

    Article  PubMed  Google Scholar 

  420. Leng Y, Goldman SM, Cawthon PM, Stone KL, Ancoli-Israel S, Yaffe K (2018) Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson’s disease in older men. Int J Epidemiol 47(5):1679–1686

    Article  PubMed  PubMed Central  Google Scholar 

  421. Bokenberger K, Sjölander A, Dahl Aslan AK, Karlsson IK, Åkerstedt T, Pedersen NL (2018) Shift work and risk of incident dementia: a study of two population-based cohorts. Eur J Epidemiol 33(10):977–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Schernhammer ES, Lassen CF, Kenborg L, Ritz B, Olsen JH, Hansen J (2015) Occupational history of night shift work and Parkinson’s disease in Denmark. Scand J Work Environ Health 41(4):377–383

    Article  PubMed  Google Scholar 

  423. Cedernaes J, Osorio RS, Varga AW, Kam K, Schiöth HB, Benedict C (2017) Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer’s disease. Sleep Med Rev 31:102–111

    Article  PubMed  Google Scholar 

  424. Di Meco A, Joshi YB, Praticò D (2014) Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol Aging 35(8):1813–1820

    Article  PubMed  CAS  Google Scholar 

  425. Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP et al (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70(5):587–593

    Article  PubMed  PubMed Central  Google Scholar 

  426. Rothman SM, Herdener N, Frankola KA, Mughal MR, Mattson MP (2013) Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res 1529:200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Lucey BP, Hicks TJ, McLeland JS, Toedebusch CD, Boyd J, Elbert DL et al (2018) Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol 83(1):197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Zhu Y, Zhan G, Fenik P, Brandes M, Bell P, Francois N et al (2018) Chronic sleep disruption advances the temporal progression of tauopathy in P301S mutant mice. J Neurosci 38(48):10255–10270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, Tononi G et al (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355(6324):507–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  430. Fahrenkrug J, Popovic N, Georg B, Brundin P, Hannibal J (2007) Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J Mol Neurosci 31(2):139–148

    CAS  PubMed  Google Scholar 

  431. Kudo T, Schroeder A, Loh DH, Kuljis D, Jordan MC, Roos KP (2011) Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol 228(1):80–90

    Article  CAS  PubMed  Google Scholar 

  432. Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R et al (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27(29):7869–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B et al (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58(1):29–39

    Article  CAS  PubMed  Google Scholar 

  434. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44

    Article  CAS  PubMed  Google Scholar 

  435. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977

    Article  CAS  PubMed  Google Scholar 

  436. Bélanger V, Picard N, Cermakian N (2006) The circadian regulation of Presenilin-2 gene expression. Chronobiol Int 23(4):747–766

    Article  PubMed  CAS  Google Scholar 

  437. Chauhan R, Chen KF, Kent BA, Crowther DC (2017) Central and peripheral circadian clocks and their role in Alzheimer’s disease. Dis Model Mech 10(10):1187–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Homolak J, Mudrovčić M, Vukić B, Toljan K (2018) Circadian rhythm and Alzheimer’s disease. Med Sci (Basel) 6(3). pii: E52. https://doi.org/10.3390/medsci6030052

  439. Hood S, Amir S (2017) Neurodegeneration and the circadian clock. Front Aging Neurosci 9:170. https://doi.org/10.3389/fnagi.2017.00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K (2019) Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 18(3):307–318

    Article  PubMed  PubMed Central  Google Scholar 

  441. Li S, Wang Y, Wang F, Hu LF, Liu CF (2017) A new perspective for Parkinson’s disease: circadian rhythm. Neurosci Bull 33(1):62–72

    Article  PubMed  CAS  Google Scholar 

  442. Musiek ES (2017) Circadian rhythms in AD pathogenesis: a critical appraisal. Curr Sleep Med Rep 3(2):85–92

    Article  PubMed  PubMed Central  Google Scholar 

  443. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL et al (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 185(10):5796–5805

    Article  CAS  PubMed  Google Scholar 

  444. Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ (2016) Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev 37(6):584–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Zee PC, Attarian H, Videnovic A (2013) Circadian rhythm abnormalities. Continuum (Minneap Minn) 19(1 Sleep Disorders):132–147

    Google Scholar 

  446. Ortiz-Tudela E, Mteyrek A, Ballesta A, Innominato PF, Lévi F (2013) Cancer chronotherapeutics: experimental, theoretical, and clinical aspects. Handb Exp Pharmacol 217:261–288

    Article  CAS  Google Scholar 

  447. Antoch MP, Kondratov RV (2013) Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. Handb Exp Pharmacol 217:289–309

    Article  CAS  Google Scholar 

  448. Chen Z, Yoo SH, Takahashi JS (2013) Small molecule modifiers of circadian clocks. Cell Mol Life Sci 70(16):2985–2998

    Article  CAS  PubMed  Google Scholar 

  449. Gloston GF, Yoo SH, Chen ZJ (2017) Clock-enhancing small molecules and potential applications in chronic diseases and aging. Front Neurol 8:100. https://doi.org/10.3389/fneur.2017.00100

    Article  PubMed  PubMed Central  Google Scholar 

  450. Kojetin DJ, Burris TP (2014) REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 13(3):197–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Schroeder AM, Colwell CS (2013) How to fix a broken clock. Trends Pharmacol Sci 34(11):605–619

    Article  CAS  PubMed  Google Scholar 

  452. Wallach T, Kramer A (2015) Chemical chronobiology: toward drugs manipulating time. FEBS Lett 589(14):1530–1538

    Article  CAS  PubMed  Google Scholar 

  453. Froy O (2018) Circadian rhythms, nutrition and implications for longevity in urban environments. Proc Nutr Soc 77(3):216–222

    Article  CAS  PubMed  Google Scholar 

  454. Froy O, Miskin R (2007) The interrelations among feeding, circadian rhythms and ageing. Prog Neurobiol 82(3):142–150

    Article  PubMed  Google Scholar 

  455. Froy O, Miskin R (2010) Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2(1):7–27

    Article  CAS  Google Scholar 

  456. Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I (2017) Health benefits of fasting and caloric restriction. Curr Diab Rep 17(12):123. https://doi.org/10.1007/s11892-017-0951-7

    Article  CAS  PubMed  Google Scholar 

  457. Kessler K, Pivovarova-Ramich O (2019) Meal timing, aging, and metabolic health. Int J Mol Sci 20(8). pii: E1911. https://doi.org/10.3390/ijms20081911

  458. Longo VD, Panda S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23(6):1048–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ et al (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111(47):16647–16653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Paoli A, Tinsley G, Bianco A, Moro T (2019) The influence of meal frequency and timing on health in humans: the role of fasting. Nutrients 11(4). pii: E719. https://doi.org/10.3390/nu11040719

  461. Cunningham JEA, Stamp JA, Shapiro CM (2019) Sleep and major depressive disorder: a review of non-pharmacological chronotherapeutic treatments for unipolar depression. Sleep Med 61:6–18

    Article  PubMed  Google Scholar 

  462. Mitolo M, Tonon C, La Morgia C, Testa C, Carelli V, Lodi R (2018) Effects of light treatment on sleep, cognition, mood, and behavior in Alzheimer’s disease: a systematic review. Dement Geriatr Cogn Disord 46(5–6):371–384

    Article  PubMed  Google Scholar 

  463. Rutten S, Vriend C, van den Heuvel OA, Smit JH, Berendse HW, van der Werf YD (2012) Bright light therapy in Parkinson’s disease: an overview of the background and evidence. Parkinsons Dis 2012:767105. https://doi.org/10.1155/2012/767105

    Article  PubMed  PubMed Central  Google Scholar 

  464. van Wamelen DJ, Roos RA, Aziz NA (2015) Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 5(6):549–559

    Article  PubMed  Google Scholar 

  465. Wu YH, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8(6):623–636

    Article  PubMed  Google Scholar 

  466. Yamadera H, Ito T, Suzuki H, Asayama K, Ito R, Endo S (2000) Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin Neurosci 54(3):352–353

    Article  CAS  PubMed  Google Scholar 

  467. Van Someren EJ, Kessler A, Mirmiran M, Swaab DF (1997) Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry 41(9):955–963

    Article  PubMed  Google Scholar 

  468. Fetveit A, Bjorvatn B (2004) The effects of bright-light therapy on actigraphical measured sleep last for several weeks post-treatment. A study in a nursing home population. J Sleep Res 13(2):153–158

    Article  PubMed  Google Scholar 

  469. Lyketsos CG, Lindell Veiel L, Baker A, Steele C (1999) A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Int J Geriatr Psychiatry 14(7):520–525

    Article  CAS  PubMed  Google Scholar 

  470. Okumoto Y, Koyama E, Matsubara H, Nakano T, Nakamura R (1998) Sleep improvement by light in a demented aged individual. Psychiatry Clin Neurosci 52(2):194–196

    Article  CAS  PubMed  Google Scholar 

  471. Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K (1994) Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 89(1):1–7

    Article  CAS  PubMed  Google Scholar 

  472. Dowling GA, Graf CL, Hubbard EM, Luxenberg JS (2007) Light treatment for neuropsychiatric behaviors in Alzheimer’s disease. West J Nurs Res 29(8):961–975

    Article  PubMed  PubMed Central  Google Scholar 

  473. Fetveit A, Bjorvatn B (2005) Bright-light treatment reduces actigraphic-measured daytime sleep in nursing home patients with dementia: a pilot study. Am J Geriatr Psychiatry 13(5):420–423

    Article  PubMed  Google Scholar 

  474. Skjerve A, Holsten F, Aarsland D, Bjorvatn B, Nygaard HA, Johansen IM (2004) Improvement in behavioral symptoms and advance of activity acrophase after short-term bright light treatment in severe dementia. Psychiatry Clin Neurosci 58(4):343–347

    Article  PubMed  Google Scholar 

  475. Sekiguchi H, Iritani S, Fujita K (2017) Bright light therapy for sleep disturbance in dementia is most effective for mild to moderate Alzheimer’s type dementia: a case series. Psychogeriatrics 17(5):275–281

    Article  PubMed  Google Scholar 

  476. Paus S, Schmitz-Hübsch T, Wüllner U, Vogel A, Klockgether T, Abele M (2007) Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord 22(10):1495–1498

    Article  PubMed  Google Scholar 

  477. Willis GL, Turner EJ (2007) Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 24(3):521–537

    Article  PubMed  Google Scholar 

  478. Videnovic A, Klerman EB, Wang W, Marconi A, Kuhta T, Zee PC (2017) Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: a randomized clinical trial. JAMA Neurol 74(4):411–418

    Article  PubMed  PubMed Central  Google Scholar 

  479. Willis GL, Boda J, Freelance CB (2018) Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: a controlled exploratory trial. Front Neurol 9:741. https://doi.org/10.3389/fneur.2018.00741

    Article  PubMed  PubMed Central  Google Scholar 

  480. Rutten S, Vriend C, Smit JH, Berendse HW, van Someren EJW, Hoogendoorn AW (2019) Bright light therapy for depression in Parkinson disease: a randomized controlled trial. Neurology 92(11):e1145–e1156

    PubMed  Google Scholar 

  481. Fetveit A, Skjerve A, Bjorvatn B (2003) Bright light treatment improves sleep in institutionalised elderly--an open trial. Int J Geriatr Psychiatry 18(6):520–526

    Article  PubMed  Google Scholar 

  482. Kohsaka M, Fukuda N, Honma H, Kobayashi R, Sakakibara S, Koyama E et al (1999) Effects of moderately bright light on subjective evaluations in healthy elderly women. Psychiatry Clin Neurosci 53(2):239–241

    Article  CAS  PubMed  Google Scholar 

  483. Royer M, Ballentine NH, Eslinger PJ, Houser K, Mistrick R, Behr R (2012) Light therapy for seniors in long term care. J Am Med Dir Assoc 13(2):100–102

    Article  PubMed  Google Scholar 

  484. Usui A, Ishizuka Y, Matsushita Y, Fukuzawa H, Kanba S (2000) Bright light treatment for night-time insomnia and daytime sleepiness in elderly people: comparison with a short-acting hypnotic. Psychiatry Clin Neurosci 54(3):374–376

    Article  CAS  PubMed  Google Scholar 

  485. Friedman L, Spira AP, Hernandez B, Mather C, Sheikh J, Ancoli-Israel S et al (2012) Brief morning light treatment for sleep/wake disturbances in older memory-impaired individuals and their caregivers. Sleep Med 13(5):546–549

    Article  PubMed  PubMed Central  Google Scholar 

  486. Kobayashi R, Fukuda N, Kohsaka M, Sasamoto Y, Sakakibara S, Koyama E et al (2001) Effects of bright light at lunchtime on sleep of patients in a geriatric hospital I. Psychiatry Clin Neurosci 55(3):287–289

    Article  CAS  PubMed  Google Scholar 

  487. Lieverse R, Van Someren EJ, Nielen MM, Uitdehaag BM, Smit JH, Hoogendijk WJ (2011) Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry 68(1):61–70

    Article  PubMed  Google Scholar 

  488. Loving RT, Kripke DF, Elliott JA, Knickerbocker NC, Grandner MA (2005) Bright light treatment of depression for older adults [ISRCTN55452501]. BMC Psychiatry 5:41. https://doi.org/10.1186/1471-244X-5-42

    Article  PubMed  PubMed Central  Google Scholar 

  489. Tsai YF, Wong TK, Juang YY, Tsai HH (2004) The effects of light therapy on depressed elders. Int J Geriatr Psychiatry 19(6):545–548

    Article  PubMed  Google Scholar 

  490. Chang CH, Liu CY, Chen SJ, Tsai HC (2018) Efficacy of light therapy on nonseasonal depression among elderly adults: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 14:3091–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Güzel Özdemir P, Boysan M, Smolensky MH, Selvi Y, Aydin A, Yilmaz E (2015) Comparison of venlafaxine alone versus venlafaxine plus bright light therapy combination for severe major depressive disorder. J Clin Psychiatry 76(5):e645–e654

    Article  PubMed  Google Scholar 

  492. Martiny K (2004) Adjunctive bright light in non-seasonal major depression. Acta Psychiatr Scand Suppl 425:7–28

    Article  Google Scholar 

  493. Martiny K, Lunde M, Undén M, Dam H, Bech P (2006) The lack of sustained effect of bright light, after discontinuation, in non-seasonal major depression. Psychol Med 36(9):1247–1252

    Article  PubMed  Google Scholar 

  494. Canazei M, Pohl W, Bauernhofer K, Papousek I, Lackner HK, Bliem HR et al (2017) Psychophysiological effects of a single, short, and moderately bright room light exposure on mildly depressed geriatric inpatients: a pilot study. Gerontology 63(4):308–317

    Article  PubMed  Google Scholar 

  495. Mishima K, Okawa M, Hozumi S, Hishikawa Y (2000) Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 17(3):419–432

    Article  CAS  PubMed  Google Scholar 

  496. Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ (2008) Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299(22):2642–2655

    Article  CAS  PubMed  Google Scholar 

  497. Lucassen PJ, Chung WC, Vermeulen JP, Van Lookeren CM, Van Dierendonck JH, Swaab DF (1995) Microwave-enhanced in situ end-labeling of fragmented DNA: parametric studies in relation to postmortem delay and fixation of rat and human brain. J Histochem Cytochem 43(11):1163–1171

    Article  CAS  PubMed  Google Scholar 

  498. Lucassen PJ, Goudsmit E, Pool CW, Mengod G, Palacios JM, Raadsheer FC et al (1995) In situ hybridization for vasopressin mRNA in the human supraoptic and paraventricular nucleus; quantitative aspects of formalin-fixed paraffin-embedded tissue sections as compared to cryostat sections. J Neurosci Methods 57(2):221–230

    Article  CAS  PubMed  Google Scholar 

  499. Maruani J, Geoffroy PA (2019) Bright light as a personalized precision treatment of mood disorders. Front Psych 10:85. https://doi.org/10.3389/fpsyt.2019.00085

    Article  Google Scholar 

  500. Magnusson A, Boivin D (2003) Seasonal affective disorder: an overview. Chronobiol Int 20(2):189–207

    Article  PubMed  Google Scholar 

  501. Burgess HJ, Sharkey KM, Eastman CI (2002) Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev 6(5):407–420

    Article  PubMed  Google Scholar 

  502. Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC (1988) Exposure to light in healthy elderly subjects and Alzheimer’s patients. Physiol Behav 42(2):141–144

    Article  CAS  PubMed  Google Scholar 

  503. Luijpen MW, Scherder EJ, Van Someren EJ, Swaab DF, Sergeant JA (2003) Non-pharmacological interventions in cognitively impaired and demented patients--a comparison with cholinesterase inhibitors. Rev Neurosci 14(4):343–368

    Article  CAS  PubMed  Google Scholar 

  504. Ancoli-Israel S, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J et al (2003) Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med 1(1):22–36

    Article  PubMed  Google Scholar 

  505. Dowling GA, Burr RL, Van Someren EJ, Hubbard EM, Luxenberg JS, Mastick J et al (2008) Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 56(2):239–246

    Article  PubMed  Google Scholar 

  506. Friedman L, Zeitzer JM, Kushida C, Zhdanova I, Noda A, Lee T et al (2009) Scheduled bright light for treatment of insomnia in older adults. J Am Geriatr Soc 57(3):441–452

    Article  PubMed  PubMed Central  Google Scholar 

  507. Fukuda N, Kobayashi R, Kohsaka M, Honma H, Sasamoto Y, Sakakibara S (2001) Effects of bright light at lunchtime on sleep in patients in a geriatric hospital II. Psychiatry Clin Neurosci 55(3):291–293

    Article  CAS  PubMed  Google Scholar 

  508. Ohashi Y, Okamoto N, Uchida K, Iyo M, Mori N, Morita Y (1999) Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Biol Psychiatry 45(12):1646–1652

    Article  CAS  PubMed  Google Scholar 

  509. Fukuda N, Kohsaka M, Sasamoto Y, Koyama E, Kobayashi R, Honma H et al (1998) Effects of short duration morning bright light in healthy elderly subjects. I: subjective feeling and ophthalmological examinations. Psychiatry Clin Neurosci 52(2):250–251

    Article  CAS  PubMed  Google Scholar 

  510. Viola AU, James LM, Schlangen LJ, Dijk DJ (2008) Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health 34(4):297–306

    Article  PubMed  Google Scholar 

  511. Wright KP, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED (2013) Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol 23(16):1554–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Murphy PJ, Campbell SS (1996) Enhanced performance in elderly subjects following bright light treatment of sleep maintenance insomnia. J Sleep Res 5(3):165–172

    Article  CAS  PubMed  Google Scholar 

  513. Steffens DC, Fisher GG, Langa KM, Potter GG, Plassman BL (2009) Prevalence of depression among older Americans: the aging, demographics and memory study. Int Psychogeriatr 21(5):879–888

    Article  PubMed  PubMed Central  Google Scholar 

  514. Steinman LE, Frederick JT, Prohaska T, Satariano WA, Dornberg-Lee S, Fisher R et al (2007) Recommendations for treating depression in community-based older adults. Am J Prev Med 33(3):175–181

    Article  PubMed  Google Scholar 

  515. Sumaya IC, Rienzi BM, Deegan JF, Moss DE (2001) Bright light treatment decreases depression in institutionalized older adults: a placebo-controlled crossover study. J Gerontol A Biol Sci Med Sci 56(6):M356–M360

    Article  CAS  PubMed  Google Scholar 

  516. Benedetti F, Avery DH, Bauer M, Bunney WE, Çaliyurt O, Camardese G et al (2018) Evidence for the efficacy of bright light therapy for bipolar depression. Am J Psychiatry 175(9):905–906

    Article  PubMed  Google Scholar 

  517. Lam RW, Levitt AJ, Levitan RD, Michalak EE, Cheung AH, Morehouse R et al (2016) Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: a randomized clinical trial. JAMA Psychiat 73(1):56–63

    Article  Google Scholar 

  518. Levitt AJ, Joffe RT, Kennedy SH (1991) Bright light augmentation in antidepressant nonresponders. J Clin Psychiatry 52(8):336–337

    CAS  PubMed  Google Scholar 

  519. Prasko J, Horacek J, Klaschka J, Kosova J, Ondrackova I, Sipek J (2002) Bright light therapy and/or imipramine for inpatients with recurrent non-seasonal depression. Neuro Endocrinol Lett 23(2):109–113

    CAS  PubMed  Google Scholar 

  520. Müller MJ, Seifritz E, Hatzinger M, Hemmeter U, Holsboer-Trachsler E (1997) Side effects of adjunct light therapy in patients with major depression. Eur Arch Psychiatry Clin Neurosci 247(5):252–258

    Article  PubMed  Google Scholar 

  521. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D et al (2018) Light affects mood and learning through distinct retina-brain pathways. Cell 175(1):71–84.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. LeGates TA, Altimus CM, Wang H, Lee HK, Yang S, Zhao H et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491(7425):594–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Dowling GA, Mastick J, Hubbard EM, Luxenberg JS, Burr RL (2005) Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. Int J Geriatr Psychiatry 20(8):738–743

    Article  PubMed  PubMed Central  Google Scholar 

  524. Münch M, Schmieder M, Bieler K, Goldbach R, Fuhrmann T, Zumstein N et al (2017) Bright light delights: effects of daily light exposure on emotions, restactivity cycles, sleep and melatonin secretion in severely demented patients. Curr Alzheimer Res 14(10):1063–1075

    PubMed  Google Scholar 

  525. Barrick AL, Sloane PD, Williams CS, Mitchell CM, Connell BR, Wood W et al (2010) Impact of ambient bright light on agitation in dementia. Int J Geriatr Psychiatry 25(10):1013–1021

    Article  PubMed  PubMed Central  Google Scholar 

  526. Sloane PD, Williams CS, Mitchell CM, Preisser JS, Wood W, Barrick AL et al (2007) High-intensity environmental light in dementia: effect on sleep and activity. J Am Geriatr Soc 55(10):1524–1533

    Article  PubMed  Google Scholar 

  527. Onega LL, Pierce TW, Epperly L (2018) Bright light therapy to treat depression in individuals with mild/moderate or severe dementia. Issues Ment Health Nurs 39(5):370–373

    Article  PubMed  Google Scholar 

  528. Haffmans PM, Sival RC, Lucius SA, Cats Q, van Gelder L (2001) Bright light therapy and melatonin in motor restless behaviour in dementia: a placebo-controlled study. Int J Geriatr Psychiatry 16(1):106–110

    Article  CAS  PubMed  Google Scholar 

  529. Kirisoglu C, Guilleminault C (2004) Twenty minutes versus forty-five minutes morning bright light treatment on sleep onset insomnia in elderly subjects. J Psychosom Res 56(5):537–542

    Article  CAS  PubMed  Google Scholar 

  530. Loving RT, Kripke DF, Knickerbocker NC, Grandner MA (2005) Bright green light treatment of depression for older adults [ISRCTN69400161]. BMC Psychiatry 5:42. https://doi.org/10.1186/1471-244X-5-42

    Article  PubMed  PubMed Central  Google Scholar 

  531. Genhart MJ, Kelly KA, Coursey RD, Datiles M, Rosenthal NE (1993) Effects of bright light on mood in normal elderly women. Psychiatry Res 47(1):87–97

    Article  CAS  PubMed  Google Scholar 

  532. Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347(6227):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Zhang S, Ratliff EP, Molina B, El-Mecharrafie N, Mastroianni J, Kotzebue RW et al (2018) Aging and intermittent fasting impact on transcriptional regulation and physiological responses of adult drosophila neuronal and muscle tissues. Int J Mol Sci 19(4). https://doi.org/10.3390/ijms19041140

  534. Walcott EC, Tate BA (1996) Entrainment of aged, dysrhythmic rats to a restricted feeding schedule. Physiol Behav 60(5):1205–1208

    Article  CAS  PubMed  Google Scholar 

  535. Maywood ES, Fraenkel E, McAllister CJ, Wood N, Reddy AB, Hastings MH et al (2010) Disruption of peripheral circadian timekeeping in a mouse model of Huntington’s disease and its restoration by temporally scheduled feeding. J Neurosci 30(30):10199–10204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  536. Ehrnhoefer DE, Martin DDO, Schmidt ME, Qiu X, Ladha S, Caron NS et al (2018) Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol Commun 6(1):16. https://doi.org/10.1186/s40478-018-0518-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Wang HB, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS (2018) Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington’s disease. eNeuro 5(1). pii: ENEURO.0431-17.2017. https://doi.org/10.1523/ENEURO.0431-17.2017

  538. Delahaye LB, Bloomer RJ, Butawan MB, Wyman JM, Hill JL, Lee HW et al (2018) Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Appl Physiol Nutr Metab 43(10):1033–1042

    Article  CAS  PubMed  Google Scholar 

  539. Filipski E, Innominato PF, Wu M, Li XM, Iacobelli S, Xian LJ et al (2005) Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst 97(7):507–517

    Article  CAS  PubMed  Google Scholar 

  540. Halberg N, Henriksen M, Söderhamn N, Stallknecht B, Ploug T, Schjerling P et al (2005) Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol (1985) 99(6):2128–2136

    Article  CAS  Google Scholar 

  541. Anton SD, Lee SA, Donahoo WT, McLaren C, Manini T, Leeuwenburgh C et al (2019) The effects of time restricted feeding on overweight, older adults: a pilot study. Nutrients 11(7). pii: E1500. https://doi.org/10.3390/nu11071500

  542. Marinac CR, Godbole S, Kerr J, Natarajan L, Patterson RE, Hartman SJ (2015) Objectively measured physical activity and cognitive functioning in breast cancer survivors. J Cancer Surviv 9(2):230–238

    Article  PubMed  Google Scholar 

  543. Marinac CR, Natarajan L, Sears DD, Gallo LC, Hartman SJ, Arredondo E et al (2015) Prolonged nightly fasting and breast cancer risk: findings from NHANES (2009-2010). Cancer Epidemiol Biomark Prev 24(5):783–789

    Article  CAS  Google Scholar 

  544. Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151(3):1019–1029

    Article  CAS  PubMed  Google Scholar 

  545. Salgado-Delgado R, Nadia S, Angeles-Castellanos M, Buijs RM, Escobar C (2010) In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythm 25(6):421–431

    Article  Google Scholar 

  546. Archer SN, Laing EE, Möller-Levet CS, van der Veen DR, Bucca G, Lazar AS et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111(6):E682–E691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  547. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  548. Wefers J, van Moorsel D, Hansen J, Connell NJ, Havekes B, Hoeks J et al (2018) Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci U S A 115(30):7789–7794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  549. Almoosawi S, Prynne CJ, Hardy R, Stephen AM (2013) Diurnal eating rhythms: association with long-term development of diabetes in the 1946 British birth cohort. Nutr Metab Cardiovasc Dis 23(10):1025–1030

    Article  CAS  PubMed  Google Scholar 

  550. Almoosawi S, Prynne CJ, Hardy R, Stephen AM (2013) Time-of-day of energy intake: association with hypertension and blood pressure 10 years later in the 1946 British Birth Cohort. J Hypertens 31(5):882–892

    Article  CAS  PubMed  Google Scholar 

  551. Almoosawi S, Prynne CJ, Hardy R, Stephen AM (2013) Time-of-day and nutrient composition of eating occasions: prospective association with the metabolic syndrome in the 1946 British birth cohort. Int J Obes 37(5):725–731

    Article  CAS  Google Scholar 

  552. Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP (2010) Obesity and shift work: chronobiological aspects. Nutr Res Rev 23(1):155–168

    Article  CAS  PubMed  Google Scholar 

  553. Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME (2013) Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes 37(6):843–852

    Article  CAS  Google Scholar 

  554. Jiang P, Turek FW (2017) Timing of meals: when is as critical as what and how much. Am J Physiol Endocrinol Metab 312(5):E369–E380

    Article  PubMed  PubMed Central  Google Scholar 

  555. Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R, Haveron SM et al (2018) Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr Biol 28(11):1714–1724.e1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  556. Serra M, Marongiu F, Pisu MG, Laconi E (2019) Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging (Albany NY) 11(11):3851–3863

    Article  CAS  Google Scholar 

  557. Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J et al (2011) Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med 15(12):2745–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  558. Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF et al (2018) Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging 4(4):345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  559. Gabel K, Hoddy KK, Varady KA (2019) Safety of 8-h time restricted feeding in adults with obesity. Appl Physiol Nutr Metab 44(1):107–109

    Article  PubMed  Google Scholar 

  560. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM (2019) Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 11(6). pii: E1234. https://doi.org/10.3390/nu11061234

  561. Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M et al (2008) Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 1205:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  562. Marinac CR, Sears DD, Natarajan L, Gallo LC, Breen CI, Patterson RE (2015) Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. PLoS One 10(8):e0136240. https://doi.org/10.1371/journal.pone.0136240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  563. Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE et al (2018) Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22(5):769–778.e764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  564. Schafer MJ, Mazula DL, Brown AK, White TA, Atkinson E, Pearsall VM et al (2019) Late-life time-restricted feeding and exercise differentially alter healthspan in obesity. Aging Cell 18(4):e12966. https://doi.org/10.1111/acel.12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  565. Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V et al (2017) Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep 20(5):1061–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  566. Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J et al (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 9(377). pii: eaai8700. https://doi.org/10.1126/scitranslmed.aai8700

  567. Lettieri-Barbato D, Cannata SM, Casagrande V, Ciriolo MR, Aquilano K (2018) Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle. PLoS One 13(5):e0195912. https://doi.org/10.1371/journal.pone.0195912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20(6):991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  569. Duncan MJ, Smith JT, Narbaiza J, Mueez F, Bustle LB, Qureshi S et al (2016) Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav 167:1–9

    Article  CAS  PubMed  Google Scholar 

  570. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  571. Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20(6):1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  572. Jakubowicz D, Barnea M, Wainstein J, Froy O (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring) 21(12):2504–2512

    Article  CAS  Google Scholar 

  573. Villanueva JE, Livelo C, Trujillo AS, Chandran S, Woodworth B, Andrade L et al (2019) Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat Commun 10(1):2700. https://doi.org/10.1038/s41467-019-10563-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  574. Hartman SJ, Marinac CR, Natarajan L, Patterson RE (2015) Lifestyle factors associated with cognitive functioning in breast cancer survivors. Psychooncology 24(6):669–675

    Article  PubMed  Google Scholar 

  575. Patterson RE, Laughlin GA, LaCroix AZ, Hartman SJ, Natarajan L et al (2015) Intermittent fasting and human metabolic health. J Acad Nutr Diet 115(8):1203–1212

    Article  PubMed  PubMed Central  Google Scholar 

  576. Lin JD, Liu C, Li S (2008) Integration of energy metabolism and the mammalian clock. Cell Cycle 7(4):453–457

    Article  CAS  PubMed  Google Scholar 

  577. Oishi K, Miyazaki K, Ishida N (2002) Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of clock mutant mice on Jcl:ICR background. Biochem Biophys Res Commun 298(2):198–202

    Article  CAS  PubMed  Google Scholar 

  578. Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19(2):319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  579. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  580. Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 106(50):21453–21458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Comperatore CA, Stephan FK (1987) Entrainment of duodenal activity to periodic feeding. J Biol Rhythm 2(3):227–242

    Article  CAS  Google Scholar 

  582. Saito M, Murakami E, Nishida T, Fujisawa Y, Suda M (1976) Circadian rhythms of digestive enzymes in the small intestine of the rat. II. Effects of fasting and refeeding. J Biochem 80(3):563–568

    Article  CAS  PubMed  Google Scholar 

  583. Albrecht U (2017) The circadian clock, metabolism and obesity. Obes Rev 18(Suppl 1):25–33

    Article  PubMed  Google Scholar 

  584. Manoogian ENC, Panda S (2017) Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 39:59–67

    Article  PubMed  Google Scholar 

  585. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29(3):592–610

    Article  CAS  PubMed  Google Scholar 

  586. Hanjani NA, Vafa M (2018) Protein restriction, epigenetic diet, intermittent fasting as new approaches for preventing age-associated diseases. Int J Prev Med 9:58. https://doi.org/10.4103/ijpvm.IJPVM_397_16

    Article  PubMed  PubMed Central  Google Scholar 

  587. Choi IY, Lee C, Longo VD (2017) Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol 455:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  588. Hoshino S, Kobayashi M, Higami Y (2018) Mechanisms of the anti-aging and prolongevity effects of caloric restriction: evidence from studies of genetically modified animals. Aging (Albany NY) 10(9):2243–2251

    Article  CAS  Google Scholar 

  589. Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T et al (2012) Identification of small molecule activators of cryptochrome. Science 337(6098):1094–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  590. Humphries PS, Bersot R, Kincaid J, Mabery E, McCluskie K, Park T et al (2016) Carbazole-containing sulfonamides and sulfamides: discovery of cryptochrome modulators as antidiabetic agents. Bioorg Med Chem Lett 26(3):757–760

    Article  CAS  PubMed  Google Scholar 

  591. Chun SK, Jang J, Chung S, Yun H, Kim NJ, Jung JW et al (2014) Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem Biol 9(3):703–710

    Article  CAS  PubMed  Google Scholar 

  592. Jang J, Chung S, Choi Y, Lim HY, Son Y, Chun SK et al (2018) The cryptochrome inhibitor KS15 enhances E-box-mediated transcription by disrupting the feedback action of a circadian transcription-repressor complex. Life Sci 200:49–55

    Article  CAS  PubMed  Google Scholar 

  593. Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J et al (2015) A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochem Biophys Res Commun 467(2):441–446

    Article  CAS  PubMed  Google Scholar 

  594. Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE et al (2010) Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A 107(34):15240–15245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  595. Carrino M, Quotti Tubi L, Fregnani A, Canovas Nunes S, Barilà G, Trentin L et al (2019) Prosurvival autophagy is regulated by protein kinase CK1 alpha in multiple myeloma. Cell Death Discov 5:98. https://doi.org/10.1038/s41420-019-0179-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  596. Xiong Y, Zhou L, Su Z, Song J, Sun Q, Liu SS et al (2019) Longdaysin inhibits Wnt/β-catenin signaling and exhibits antitumor activity against breast cancer. Onco Targets Ther 12:993–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  597. Tsakiri EN, Gaboriaud-Kolar N, Iliaki KK, Tchoumtchoua J, Papanagnou ED, Chatzigeorgiou S et al (2017) The indirubin derivative 6-bromoindirubin-3’-oxime activates proteostatic modules, reprograms cellular bioenergetic pathways, and exerts antiaging effects. Antioxid Redox Signal 27(14):1027–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  598. Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y et al (2008) Soluble 3′,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase −3 alter circadian period. J Med Chem 51(20):6421–6431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  599. Zhao H, Meng W, Li Y, Liu W, Fu B, Yang Y et al (2016) The protective effects of CHIR99021 against oxidative injury in LO2 cells. Pharmazie 71(11):629–635

    CAS  PubMed  Google Scholar 

  600. Naujok O, Lentes J, Diekmann U, Davenport C, Lenzen S (2014) Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes 7:273. https://doi.org/10.1186/1756-0500-7-273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  601. Oh J, Kim Y, Che L, Kim JB, Chang GE, Cheong E et al (2017) Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma. PLoS One 12(11):e0178881. https://doi.org/10.1371/journal.pone.0178881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  602. Andrabi M, Andrabi MM, Kunjunni R, Sriwastva MK, Bose S, Sagar R et al (2019) Lithium acts to modulate abnormalities at behavioral, cellular and molecular levels in sleep deprivation induced mania-like behavior. Bipolar Disord. https://doi.org/10.1111/bdi.12838. [Epub ahead of print]

  603. Iwahana E, Akiyama M, Miyakawa K, Uchida A, Kasahara J, Fukunaga K et al (2004) Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur J Neurosci 19(8):2281–2287

    Article  PubMed  Google Scholar 

  604. Li J, Lu WQ, Beesley S, Loudon AS, Meng QJ (2012) Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One 7(3):e33292. https://doi.org/10.1371/journal.pone.0033292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  605. Sawai Y, Okamoto T, Muranaka Y, Nakamura R, Matsumura R, Node K et al (2019) In vivo evaluation of the effect of lithium on peripheral circadian clocks by real-time monitoring of clock gene expression in near-freely moving mice. Sci Rep 9(1):10909. https://doi.org/10.1038/s41598-019-47053-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  606. He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z et al (2016) The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23(4):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  607. Lee YS, Cha BY, Choi SS, Choi BK, Yonezawa T, Teruya T et al (2013) Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem 24(1):156–162

    Article  CAS  PubMed  Google Scholar 

  608. Matsuzaki K, Miyazaki K, Sakai S, Yawo H, Nakata N, Moriguchi S et al (2008) Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus. Eur J Pharmacol 578(2–3):194–200

    Article  CAS  PubMed  Google Scholar 

  609. Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ (2019) Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells. Molecules 24(16). pii: E2881 https://doi.org/10.3390/molecules24162881

  610. Keshtkar S, Kaviani M, Jabbarpour Z, Geramizadeh B, Motevaseli E, Nikeghbalian S et al (2019) Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Sci Rep 9(1):11701. https://doi.org/10.1038/s41598-019-48262-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  611. Nohara K, Nemkov T, D’Alessandro A, Yoo SH, Chen Z (2019) Coordinate regulation of cholesterol and bile acid metabolism by the clock modifier nobiletin in metabolically challenged old mice. Int J Mol Sci 20(17). pii: E4281. https://doi.org/10.3390/ijms20174281

  612. Nohara K, Mallampalli V, Nemkov T, Wirianto M, Yang J, Ye Y et al (2019) Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun 10(1):3923. https://doi.org/10.1038/s41467-019-11926-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  613. Oyama Y, Bartman CM, Gile J, Sehrt D, Eckle T (2018) The circadian PER2 enhancer nobiletin reverses the deleterious effects of midazolam in myocardial ischemia and reperfusion injury. Curr Pharm Des 24(28):3376–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  614. Mao Q, Liang X, Wu Y, Lu Y (2019) Nobiletin protects against myocardial injury and myocardial apoptosis following coronary microembolization via activating PI3K/Akt pathway in rats. Naunyn Schmiedeberg’s Arch Pharmacol 392(9):1121–1130

    Article  CAS  Google Scholar 

  615. Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q et al (2019) Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol 73:98–107

    Article  CAS  PubMed  Google Scholar 

  616. Yabuki Y, Ohizumi Y, Yokosuka A, Mimaki Y, Fukunaga K (2014) Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience 259:126–141

    Article  CAS  PubMed  Google Scholar 

  617. Byun JK, Choi YK, Kang YN, Jang BK, Kang KJ, Jeon YH et al (2015) Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology 61(3):953–964

    Article  CAS  PubMed  Google Scholar 

  618. Helleboid S, Haug C, Lamottke K, Zhou Y, Wei J, Daix S et al (2014) The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). J Biomol Screen 19(3):399–406

    Article  CAS  PubMed  Google Scholar 

  619. Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22(13):5581–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  620. Sun Q, Chen L, Gao M, Jiang W, Shao F, Li J et al (2012) Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB. Int Immunopharmacol 12(1):88–93

    Article  CAS  PubMed  Google Scholar 

  621. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J et al (2011) Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472(7344):491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  622. Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E et al (2012) Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci U S A 109(1):101–106

    Article  CAS  PubMed  Google Scholar 

  623. Zhang Y, Wang JH, Zhang YY, Wang YZ, Wang J, Zhao Y et al (2016) Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci Rep 6:23010. https://doi.org/10.1038/srep23010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  624. Kumar N, Kojetin DJ, Solt LA, Kumar KG, Nuhant P, Duckett DR et al (2011) Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem Biol 6(3):218–222

    Article  CAS  PubMed  Google Scholar 

  625. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH et al (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109(2):582–587

    Article  CAS  PubMed  Google Scholar 

  626. Grant D, Yin L, Collins JL, Parks DJ, Orband-Miller LA, Wisely GB et al (2010) GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem Biol 5(10):925–932

    Article  CAS  PubMed  Google Scholar 

  627. Banerjee S, Wang Y, Solt LA, Griffett K, Kazantzis M, Amador A et al (2014) Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun 5:5759. https://doi.org/10.1038/ncomms6759

    Article  CAS  PubMed  Google Scholar 

  628. De Mei C, Ercolani L, Parodi C, Veronesi M, Lo Vecchio C, Bottegoni G et al (2015) Dual inhibition of REV-ERBβ and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene 34(20):2597–2608

    Article  PubMed  CAS  Google Scholar 

  629. Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153(7):1448–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  630. Pifferi F, Dal-Pan A, Languille S, Aujard F (2013) Effects of resveratrol on daily rhythms of locomotor activity and body temperature in young and aged grey mouse lemurs. Oxidative Med Cell Longev 2013:187301. https://doi.org/10.1155/2013/187301

    Article  CAS  Google Scholar 

  631. Bellet MM, Nakahata Y, Boudjelal M, Watts E, Mossakowska DE, Edwards KA et al (2013) Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci U S A 110(9):3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  632. Yao H, Sundar IK, Huang Y, Gerloff J, Sellix MT, Sime PJ et al (2015) Disruption of Sirtuin 1-Mediated control of circadian molecular clock and inflammation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 53(6):782–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  633. Ye T, Wei L, Shi J, Jiang K, Xu H, Hu L et al (2019) Sirtuin1 activator SRT2183 suppresses glioma cell growth involving activation of endoplasmic reticulum stress pathway. BMC Cancer 19(1):706. https://doi.org/10.1186/s12885-019-5852-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  634. Doi M, Murai I, Kunisue S, Setsu G, Uchio N, Tanaka R et al (2016) Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat Commun 7:10583. https://doi.org/10.1038/ncomms10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  635. Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP et al (2013) Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol 9(10):630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  636. Lee JW, Hirota T, Kumar A, Kim NJ, Irle S, Kay SA (2015) Development of small-molecule cryptochrome stabilizer derivatives as modulators of the circadian clock. ChemMedChem 10(9):1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  637. Nangle S, Xing W, Zheng N (2013) Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res 23(12):1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  638. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277(46):44244–44251

    Article  CAS  PubMed  Google Scholar 

  639. Haus EL, Smolensky MH (2013) Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 17(4):273–284

    Article  PubMed  Google Scholar 

  640. Kochan DZ, Ilnytskyy Y, Golubov A, Deibel SH, McDonald RJ, Kovalchuk O (2015) Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues. Oncoscience 2(4):428–442

    Article  PubMed  PubMed Central  Google Scholar 

  641. Kochan DZ, Kovalchuk O (2015) Circadian disruption and breast cancer: an epigenetic link? Oncotarget 6(19):16866–16882

    Article  PubMed  PubMed Central  Google Scholar 

  642. Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X et al (2010) High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol 8(12):e1000559. https://doi.org/10.1371/journal.pbio.1000559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  643. Reischl S, Vanselow K, Westermark PO, Thierfelder N, Maier B, Herzel H et al (2007) Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J Biol Rhythm 22(5):375–386

    Article  CAS  Google Scholar 

  644. Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T et al (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20(19):2660–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  645. Lee JW, Hirota T, Peters EC, Garcia M, Gonzalez R, Cho CY et al (2011) A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angew Chem Int Ed Engl 50(45):10608–10611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  646. Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH et al (2009) CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 106(37):15744–15749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  647. Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y (2009) Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem Cytochem 42(3):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  648. Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y et al (2004) A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 29(10):1901–1909

    Article  CAS  PubMed  Google Scholar 

  649. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644

    Article  CAS  PubMed  Google Scholar 

  650. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102

    Article  CAS  PubMed  Google Scholar 

  651. Mansour HA, Talkowski ME, Wood J, Pless L, Bamne M, Chowdari KV et al (2005) Serotonin gene polymorphisms and bipolar I disorder: focus on the serotonin transporter. Ann Med 37(8):590–602

    Article  CAS  PubMed  Google Scholar 

  652. Mansour HA, Wood J, Chowdari KV, Dayal M, Thase ME, Kupfer DJ et al (2005) Circadian phase variation in bipolar I disorder. Chronobiol Int 22(3):571–584

    Article  PubMed  Google Scholar 

  653. Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P (2010) Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One 5(1):e8561. https://doi.org/10.1371/journal.pone.0008561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  654. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS et al (2012) Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci U S A 109(37):E2457–E2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  655. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311(5763):1002–1005

    Article  CAS  PubMed  Google Scholar 

  656. Iitaka C, Miyazaki K, Akaike T, Ishida N (2005) A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280(33):29397–29402

    Article  CAS  PubMed  Google Scholar 

  657. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A et al (2017) Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidative Med Cell Longev 2017:4629495. https://doi.org/10.1155/2017/4629495

    Article  CAS  Google Scholar 

  658. Centers for Disease Control and Prevention (2017) QuickStats: death rates for chronic liver disease and cirrhosis, by sex and age group — national vital statistics system, United States, 2000 and 2015. Morb Mort Wkly Rep (MMWR). https://www.cdc.gov/mmwr/volumes/66/wr/mm6638a9.htm

  659. Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD et al (2014) The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Cell Metab 19(2):193–208

    Article  CAS  PubMed  Google Scholar 

  660. Zhao X, Hirota T, Han X, Cho H, Chong LW, Lamia K et al (2016) Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell 165(7):1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  661. He B, Chen Z (2016) Molecular targets for small-molecule modulators of circadian clocks. Curr Drug Metab 17(5):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  662. Mulvihill EE, Burke AC, Huff MW (2016) Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu Rev Nutr 36:275–299

    Article  CAS  PubMed  Google Scholar 

  663. Walle T (2007) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17(5):354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  664. Huang H, Li L, Shi W, Liu H, Yang J, Yuan X et al (2016) The multifunctional effects of nobiletin and its metabolites. Evid Based Complement Alternat Med 2016:2918796. https://doi.org/10.1155/2016/2918796

    Article  PubMed  PubMed Central  Google Scholar 

  665. Evans M, Prathie SP, Guthrie N (2012) Bioavailability of citrus polymethoxylated flavones and their biological role in metabolic syndrome and hyperlipidemia. In: Noreddin A (ed) Readings in advanced pharmacokinetics - theory, methods and applications. IntechOpen, London. ISBN: 978-953-51-0533-6

    Google Scholar 

  666. Bass J, Lazar MA (2016) Circadian time signatures of fitness and disease. Science 354(6315):994–999

    Article  CAS  PubMed  Google Scholar 

  667. Nohara K, Shin Y, Park N, Jeong K, He B, Koike N et al (2015) Ammonia-lowering activities and carbamoyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid. Nutr Metab (Lond) 12:23. https://doi.org/10.1186/s12986-015-0020-7

    Article  CAS  Google Scholar 

  668. Shinozaki A, Misawa K, Ikeda Y, Haraguchi A, Kamagata M, Tahara Y et al (2017) Potent effects of flavonoid nobiletin on amplitude, period, and phase of the circadian clock rhythm in PER2::LUCIFERASE mouse embryonic fibroblasts. PLoS One 12(2):e0170904. https://doi.org/10.1371/journal.pone.0170904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  669. Bonney S, Kominsky D, Brodsky K, Eltzschig H, Walker L, Eckle T (2013) Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS One 8(8):e71493. https://doi.org/10.1371/journal.pone.0071493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  670. Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M et al (2014) Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol 192(3):1249–1256

    Article  CAS  PubMed  Google Scholar 

  671. Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118(11):1808–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Mamontova A, Séguret-Macé S, Esposito B, Chaniale C, Bouly M, Delhaye-Bouchaud N et al (1998) Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circulation 98(24):2738–2743

    Article  CAS  PubMed  Google Scholar 

  673. Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H et al (2011) Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes 60(1):177–188

    Article  CAS  PubMed  Google Scholar 

  674. Kang HS, Okamoto K, Takeda Y, Beak JY, Gerrish K, Bortner CD et al (2011) Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol Genomics 43(13):818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  675. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Victoria L. Bagent and Katherine N. Lyons for their assistance with manuscript proofreading and final preparation. Research support provided by a grant from the National Institute of Aging R016062398 (L.C.L.), a grant from the Council on Research and Creativity at Florida State University (L.C.L.) and a Graduate Women in Science National Fellowship (A.K.D.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Lyons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Nobrega, A.K., Luz, K.V., Lyons, L.C. (2020). Resetting the Aging Clock: Implications for Managing Age-Related Diseases. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_9

Download citation

Publish with us

Policies and ethics