Skip to main content

Rapid Methods for Detection of MRSA in Clinical Specimens

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2069))

Abstract

Traditional antimicrobial susceptibility test methods for detection of S. aureus resistant to oxacillin (MRSA) such as disk diffusion, broth microdilution, and oxacillin screen plate require 18–24 h of incubation after having the organism growing in pure culture. Rapid and accurate identification of MRSA isolates is essential not only for patient care, but also for effective infection control programs to limit the spread of MRSA. In the last few years, several commercial rapid tests for detection of MRSA directly from nasal and wound swabs, as well as from positive blood cultures, have been developed for use in clinical laboratories. Chromogenic agar plates and real-time PCR and other molecular tests are gaining popularity as MRSA screening tests because they have the advantage of a lower turnaround time than that of traditional culture and susceptibility testing and they are capable of detecting MRSA directly from nasal and wound swabs, allowing rapid identification of colonized or infected patients. In addition, molecular methods able to detect and differentiate S. aureus and MRSA (SA/MRSA) directly from blood cultures are becoming a useful tool for rapid detection of bacteremia caused by MSSA and MRSA. This review focuses on the procedures for performing testing using rapid methods currently available for detection of MRSA directly from clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perry JD (2017) A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin Microbiol Rev 30(4):449–479

    Article  CAS  Google Scholar 

  2. Van Belkum A, Rochas O (2018) Laboratory-based and point-of-care testing for MSSA/MRSA detection in the age of whole genome sequencing. Front Microbiol 9:1437. https://doi.org/10.3389/fmicb.2018.01437

    Article  PubMed  PubMed Central  Google Scholar 

  3. Polisena J, Chen S, Cimon K et al (2011) Clinical effectiveness of rapid tests for methicillin resistant Staphylococcus aureus (MRSA) in hospitalized patients: a systematic review. BMC Infect Dis 11:336. https://doi.org/10.1186/1471-2334-11-336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dupieux C, Trouillet-Assant S, Tasse J, Freydière AM, Raulin O, Roure-Sobas C, Salord H, Tigaud S, Laurent F (2016) Evaluation of a commercial immunochromatographic assay for rapid routine identification of PBP2a-positive Staphylococcus aureus and coagulase-negative staphylococci. Diagn Microbiol Infect Dis 86(3):262–264

    Article  CAS  Google Scholar 

  5. Xu Z, Hou Y, Peters BM, Chen D, Li B, Li L, Shirtliff ME (2016) Chromogenic media for MRSA diagnostics. Mol Biol Rep 43:1205–1212

    Article  CAS  Google Scholar 

  6. Palavecino E (2014) Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol Biol 1085:1–24

    Article  CAS  Google Scholar 

  7. Trienski TL, Barrett HL, Pasquale TR, DiPersio JR, File TM Jr (2013) Evaluation and use of a rapid Staphylococcus aureus assay by an antimicrobial stewardship program. Am J Health Syst Pharm 70:1908–1912

    Article  Google Scholar 

  8. Dupieux C, Bouchiat C, Larsen AR, Pichon B, Holmes M, Teale C, Edwards G, Hill R, Decousser JW, Trouillet-Assant S, Petersen A, Skov R, Kearns A, Laurent F (2017) Detection of mecC-positive Staphylococcus aureus: what to expect from immunological tests targeting PBP2a? J Clin Microbiol 55(6):1961–1963

    Article  CAS  Google Scholar 

  9. Kohner P, Uhl J, Kolbert C, Persing D, Cockerill F 3rd (1999) Comparison of susceptibility testing methods with mecA gene analysis for determining oxacillin (methicillin) resistance in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus spp. J Clin Microbiol 37:2952–2961

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Becker K, Ballhausen B, Köck R, Kriegeskorte A (2014) A methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol 304(7):794–804

    Article  CAS  Google Scholar 

  11. Paterson GK, Harrison EM, Holmes MA (2014) The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22(1):42–47

    Article  CAS  Google Scholar 

  12. Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G (2018) Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis 24(2):242–248

    Article  CAS  Google Scholar 

  13. Morris K, Wilson C, Wilcox MH (2012) Evaluation of chromogenic methicillin-resistant Staphylococcus aureus media: sensitivity versus turnaround time. J Hosp Infect 81:20–24

    Article  CAS  Google Scholar 

  14. Veenemans J, Verhulst C, Punselie R, van Keulen PH, Kluytmans JA (2013) Evaluation of brilliance MRSA 2 agar for detection of methicillin-resistant Staphylococcus aureus in clinical samples. J Clin Microbiol 51(3):1026–1027

    Article  CAS  Google Scholar 

  15. Dodémont M, Verhulst C, Nonhoff C, Nagant C, Denis O, Kluytmans J (2015) Prospective two-center comparison of three chromogenic agars for methicillin-resistant Staphylococcus aureus screening in hospitalized patients. J Clin Microbiol 53(9):3014–3016

    Article  Google Scholar 

  16. Theel ES (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial and fungal isolates. Clin Microbiol Newslett 35(19):155–161

    Article  Google Scholar 

  17. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. https://doi.org/10.3389/fmicb.2015.00791

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lévesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, Tremblay C (2015) A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10(12):e0144878

    Article  Google Scholar 

  19. Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, Tsakris A (2018) MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Ann Transl Med 6(12):240

    Article  Google Scholar 

  20. Lange C, Schubert S, Jung J, Kostrzewa M, Sparbier K (2014) Quantitative matrix assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection. J Clin Microbiol 52:4155–4162

    Article  Google Scholar 

  21. Oliveira K, Procop GW, Wilson D, Coull J, Stender H (2002) Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 40(1):247–251

    Article  CAS  Google Scholar 

  22. Forrest GN, Mehta S, Weekes E, Lincalis DP, Johnson JK, Venezia RA (2006) Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 58(1):154–158

    Article  CAS  Google Scholar 

  23. Harbarth S, Hawkey PM, Tenover F, Stefani S, Pantosti A, Struelens MJ (2011) Update on screening and clinical diagnosis of methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 37:110–117

    Article  CAS  Google Scholar 

  24. Baby N, Faust AC, Smith T, Sheperd LA, Knoll L, Goodman EL (2017) Nasal methicillin-resistant Staphylococcus aureus (MRSA) PCR testing reduces the duration of MRSA-targeted therapy in patients with suspected MRSA pneumonia. Antimicrob Agents Chemother 61(4):pii: e02432–16

    Google Scholar 

  25. Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G, Zanetti G (2011) High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene. J Clin Microbiol 49:722–724

    Article  Google Scholar 

  26. Wong H, Louie L, Lo RY, Simor AE (2010) Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements. J Clin Microbiol 48:3525–3531

    Article  CAS  Google Scholar 

  27. Mendes RE, Watters AA, Rhomberg PR, Farrell DJ, Jones RN (2016) Performance of BD max StaphSR for screening of methicillin-resistant Staphylococcus aureus isolates among a contemporary and diverse collection from 146 institutions located in nine U.S. Census regions: prevalence of mecA dropout mutants. J Clin Microbiol 54(1):204–207

    Article  CAS  Google Scholar 

  28. Rabaan AA, Bazzi AM (2017) Variation in MRSA identification results from different generations of Xpert MRSA real-time PCR testing kits from nasal swabs. J Infect Public Health 10:799–802

    Article  Google Scholar 

  29. Palavecino E (2010) Make the move to molecular diagnostics. MLO Med Lab Obs 42:10, 12, 14

    Google Scholar 

  30. FDA Medical Devices Databases. 510(k) Premarket notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm. Accessed 05 Nov 2018

  31. Yarbrough ML, Warren DK, Allen K, Burkholder D, Daum R, Donskey C, Knaack D, LaMarca A, May L, Miller LG, Parenti DM, Peterson L, Tan TY, Widen R, Hernandez DR, Wolk DM, Burnham CA (2017) Multicenter evaluation of the Xpert MRSA NxG assay for detection of methicillin-resistant Staphylococcus aureus in nasal swabs. J Clin Microbiol 56(1):pii: e01381–17

    Google Scholar 

  32. Lepainteur M, Delattre S, Cozza S, Lawrence C, Roux AL, Rottman M (2015) Comparative evaluation of two PCR-based methods for detection of methicillin-resistant Staphylococcus aureus (MRSA): Xpert MRSA gen 3 and BD-max MRSA XT. J Clin Microbiol 53(6):1955–1958

    Article  CAS  Google Scholar 

  33. Peterson LR, Woods CW, Davis TE Jr, Wang ZX, Young SA, Osiecki JC, Lewinski MA, Liesenfeld O (2017) Performance of the cobas MRSA/SA test for simultaneous detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus from nasal swabs. Am J Clin Pathol 148(2):119–127

    Article  CAS  Google Scholar 

  34. Silbert S, Kubasek C, Galambo F, Vendrone E, Widen R (2015) Evaluation of BD max StaphSR and BD max MRSAXT assays using ESwab-collected specimens. J Clin Microbiol 53(8):2525–2529

    Article  CAS  Google Scholar 

  35. Peterson LR, Liesenfeld O, Woods CW, Allen SD, Pombo D, Patel PA, Mehta MS, Nicholson B, Fuller D, Onderdonk A (2010) Multicenter evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test as a rapid method for detection of MRSA in nasal surveillance swabs. J Clin Microbiol 48:1661–1666

    Article  Google Scholar 

  36. Patel PA, Robicsek A, Grayes A, Schora DM, Peterson KE, Wright MO, Peterson LR (2015) Evaluation of multiple real-time PCR tests on nasal samples in a large MRSA surveillance program. Am J Clin Pathol 143(5):652–658

    Article  Google Scholar 

  37. Shumoski S, NucliSENS EasyQ MRSA (2011) Improved design and robust performance in a rapid molecular screening assay. BioMerieux Connection Newsletter. September 2011, Pages 2–4

    Google Scholar 

  38. Food and Drug Administration. Medical Devices Databases. NucliSENS EasyQ MRSA. 510 (k) Summary. https://www.accessdata.fda.gov/cdrh_docs/reviews/K102740.pdf. Accessed 10 Nov 2018

  39. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  Google Scholar 

  40. Palavecino E (2015) The use of multiplex PCR for diagnosis of infectious syndromes. Clinical Laboratory News. https://www.aacc.org/publications/cln/articles/2015/april/one-sample-multiple-results. Accessed 05 Nov 2018

  41. Buchan BW, Allen S, Burnham CA, McElvania TeKippe E, Davis T, Levi M, Mayne D, Pancholi P, Relich RF, Thomson R, Ledeboer NA (2015) Comparison of the next-generation Xpert MRSA/SA BC assay and the GeneOhm StaphSR assay to routine culture for identification of Staphylococcus aureus and methicillin-resistant S. aureus in positive-blood-culture broths. J Clin Microbiol 53(3):804–809

    Article  Google Scholar 

  42. Lee GH, Pang S, Coombs GW (2018) Misidentification of Staphylococcus aureus by the Cepheid Xpert MRSA/SA BC assay due to deletions in the spa gene. J Clin Microbiol 56(7):pii: e00530–18. https://doi.org/10.1128/JCM.00530-18

  43. Luminex Website. https://www.luminexcorp.com/the-verigene-system/. Accessed 4 Nov 2018

  44. Sullivan KV, Turner NN, Roundtree SS, Young S, Brock-Haag CA, Lacey D, Abuzaid S, Blecker-Shelly DL, Doern CD (2013) Rapid detection of gram-positive organisms by use of the Verigene gram-positive blood culture nucleic acid test and the BacT/alert pediatric FAN system in a multicenter pediatric evaluation. J Clin Microbiol 51:3579–3584

    Article  CAS  Google Scholar 

  45. Poritz M, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, Thatcher SA, Robbins T, Lingenfelter B, Amiott E, Herbener A, Daly J, Dobrowolski SF, Teng DH, Ririe KM (2011) FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One 6(10):e26047. https://doi.org/10.1371/journal.pone.0026047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altun O, Almuhayawi M, Ullberg M, Ozenci V (2013) Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 51(12):4130–4136

    Article  Google Scholar 

  47. Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM, Johnson JK, Robinson G, Carroll KC, Greer A, Morgan M, Chan R, Loeffelholz M, Valencia-Shelton F, Jenkins S, Schuetz AN, Daly JA, Barney T, Hemmert A, Kanack KJ (2016) Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol 54:687–698

    Article  Google Scholar 

  48. Ray ST, Drew RJ, Hardiman F, Pizer B, Riordan A (2016) Rapid identification of microorganisms by FilmArray blood culture identification panel improves clinical Management in Children. Pediatr Infect Dis J 35(5):e134–e138

    Article  Google Scholar 

  49. Inglis TJ, Bzdyl N, Chua IL, Urosevic NM, Leung MJ, Geelhoed E (2016) Improved blood culture identification by FilmArray in cultures from regional hospitals compared with teaching hospital cultures. J Med Microbiol 65(1):56–61

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I thank Carlos A. Fasola for helpful editorial suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Palavecino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Palavecino, E.L. (2020). Rapid Methods for Detection of MRSA in Clinical Specimens. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics