Skip to main content

Commercially Available Bioengineered Cartilage Grafts

  • Chapter
  • First Online:
Articular Cartilage of the Knee

Abstract

The goals of managing patients with symptomatic chondral defects of the knee include optimizing clinical and functional outcomes, generating durable hyaline or hyaline-like cartilage with low procedure-associated morbidity, utilizing cost-effective technology, and ultimately delaying the development of osteoarthritis. The objective of this chapter is to provide an overview of the different types of commercially available bioengineered cartilage grafts including cell-based therapies, microfracture augmentation techniques, and the use of particulated articular cartilage, as well as examples of scaffold and synthetic materials that can be used in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16(4):196–201.

    Article  PubMed  Google Scholar 

  2. Cascio BM, Sharma B. The future of cartilage repair. YOTSM. 2008., Elsevier Inc;16:221–4.

    Google Scholar 

  3. Hurst JM, et al. Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med. 2010;29(2):257–65. viii.

    Article  PubMed  Google Scholar 

  4. Reinold MM, et al. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36(10):774–94.

    Article  PubMed  Google Scholar 

  5. Mithoefer K, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.

    Article  PubMed  Google Scholar 

  6. Pipino G, Risitano S, Alviano F, Wu EJ, Bonsi L, Vaccarisi DC, Indelli PF. Microfractures and hydrogel scaffolds in the treatment of osteochondral knee defects: A clinical and histological evaluation. J Clin Orthop Trauma. 2019;10(1):67–75.

    Google Scholar 

  7. Gwosdz J, Rosinski A, Chakrabarti M, Woodall BM, Elena N, McGahan PJ, Chen JL. Osteochondral Allograft Transplantation of the Medial Femoral Condyle With Orthobiologic Augmentation and Graft-Recipient Microfracture Preparation. Arthrosc Tech. 2019;8(3):e321–e329.

    Google Scholar 

  8. Gomoll AH. Microfracture and augments. J Knee Surg. 2012;25(1):9–15.

    Article  PubMed  Google Scholar 

  9. Cascio BM, Sharma B. The future of cartilage repair. Oper Tech Sports Med. 2008;16:221–4.

    Article  Google Scholar 

  10. Dhollander AA, et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):536–42.

    Article  CAS  PubMed  Google Scholar 

  11. Erggelet C, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009;27:1353–60.

    Article  PubMed  Google Scholar 

  12. Patrascu J, Freymann U, Kaps C. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant. J Bone Joint Surg Br. 2010;92:1160–3.

    Article  CAS  PubMed  Google Scholar 

  13. Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg. 2010;76(2):260–3.

    PubMed  Google Scholar 

  14. Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1316–9.

    Article  PubMed  Google Scholar 

  15. Gille J, et al. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg. 2013;133(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  16. Schiavone Panni A, Del Regno C, Mazzitelli G, D’Apolito R, Corona K, Vasso M. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1130–6.

    PubMed  Google Scholar 

  17. Bertho P, Pauvert A, Pouderoux T, Robert H; Orthopaedics and Traumatology Society of Western France (SOO). Treatment of large deep osteochondritis lesions of the knee by autologous matrix-induced chondrogenesis (AMIC): Preliminary results in 13 patients. Orthop Traumatol Surg Res. 2018;104(5):695–700.

    Google Scholar 

  18. Chen H, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.

    Article  PubMed  Google Scholar 

  19. Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017;41(4):797–804.

    Article  PubMed  Google Scholar 

  20. Holt K, Sorhaindo M, Coady C, Wong IH. Arthroscopic treatment of medial femoral knee osteochondral defect using subchondroplasty and chitosan-based scaffold. Arthrosc Tech. 2019;8(4):e413–e418.

    Google Scholar 

  21. Stanish WD, et al. A new gel implant for cartilage repair, in ISAKOS, 8th Biennial Congress. Brazil: Rio de Janeiro; 2011.

    Google Scholar 

  22. Steinwachs M, Cavalcanti N, Mauuva Venkatesh Reddy S, Werner C, Tschopp D, Choudur HN. Arthroscopic and open treatment of cartilage lesions with BST-CARGEL scaffold and microfracture: A cohort study of consecutive patients. Knee. 2019;26(1):174–84.

    Google Scholar 

  23. Carter AH, Guttierez N, Subhawong TK, Temple HT, Lesniak BP, Baraga MG, Jose J. MR imaging of BioCartilage augmented microfracture surgery utilizing 2D MOCART and KOOS scores. J Clin Orthop Trauma. 2018;9(2):146–52.

    Article  PubMed  Google Scholar 

  24. Fortier LA, Chapman HS, Pownder SL. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44:2366–74.

    Article  PubMed  Google Scholar 

  25. Hirahara AM, Mueller KW Jr. BioCartilage: a new bio material to treat chondral lesions. Sports Med Arthrosc Rev. 2015;23:143–8.

    Article  PubMed  Google Scholar 

  26. Fortier L, Hackett CH, Cole BJ. The effects of platelet-rich plasma on cartilage: basic science and clinical application. Oper Tech Sports Med. 2011;19:154–9.

    Article  Google Scholar 

  27. Malinin T, Temple HT, Carpenter EM. Induction of regeneration of articular cartilage defects by freeze dried particulate cartilage allografts. International Cartilage Repair Society. 2009. Miami.

    Google Scholar 

  28. Briggs TW, et al. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee. J Bone Joint Surg Br. 2003;85(7):1077–83.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson L, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. 2002;30(1):2–12.

    Article  PubMed  Google Scholar 

  30. Bentley G, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  31. Haddo O, et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee. 2004;11(1):51–5.

    Article  PubMed  Google Scholar 

  32. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  33. Saris DB, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36(2):235–46.

    Article  PubMed  Google Scholar 

  34. Saris DB, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37:10S–9S.

    Google Scholar 

  35. Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  36. Cherubino P, et al. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong). 2003;11(1):10–5.

    Article  CAS  Google Scholar 

  37. Romeo AA, et al. Autologous chondrocyte repair of an articular defect in the humeral head. Arthroscopy. 2002;18(8):925–9.

    Article  PubMed  Google Scholar 

  38. Sohn DH, et al. Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res. 2002;394:254–62.

    Article  Google Scholar 

  39. Brittberg M, et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A(Suppl 3):109–15.

    Article  Google Scholar 

  40. Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med. 1999;18(1):13–44. v-vi.

    Article  CAS  PubMed  Google Scholar 

  41. Peterson L, et al. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl 2):17–24.

    Article  Google Scholar 

  42. Peterson L, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  Google Scholar 

  43. Harris JD, et al. Autologous Chondrocyte Implantation: A Systematic Review. J Bone Joint Surg. 2010;92:2220–33.

    Article  PubMed  Google Scholar 

  44. Bartlett W, et al. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J Bone Joint Surg Br. 2005;87:330–2.

    Article  CAS  PubMed  Google Scholar 

  45. Bartlett W, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5.

    Article  CAS  PubMed  Google Scholar 

  46. Saris D, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. June 2014;42:1384–94.

    Article  PubMed  Google Scholar 

  47. Jungmann PM, et al. Autologous chondrocyte implantation for treatment of cartilage defects of the knee: what predicts the need for reintervention? Am J Sports Med. 2012;40(1):58–67.

    Article  PubMed  Google Scholar 

  48. Pestka JM, et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325–31.

    Article  PubMed  Google Scholar 

  49. Minas T. Autologous chondrocyte implantation in the arthritic knee. Orthopedics. 2003;26(9):945–7.

    PubMed  Google Scholar 

  50. Saleh KJ, et al. Symposium. Operative treatment of patellofemoral arthritis. J Bone Joint Surg Am. 2005;87(3):659–71.

    PubMed  Google Scholar 

  51. Minas T, et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468(1):147–57.

    Article  PubMed  Google Scholar 

  52. Dell’Accio F, De Bari C, Luyten FP. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum. 2001;44(7):1608–19.

    Article  PubMed  Google Scholar 

  53. Dell’Accio F, De Bari C, Luyten FP. Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res. 2003;287(1):16–27.

    Article  PubMed  CAS  Google Scholar 

  54. Vanlauwe J, et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med. 2011;39(12):2566–74.

    Article  PubMed  Google Scholar 

  55. Gerlier L, et al. The cost utility of autologous chondrocytes implantation using ChondroCelect(R) in symptomatic knee cartilage lesions in Belgium. Pharmacoeconomics. 2010;28(12):1129–46.

    Article  PubMed  Google Scholar 

  56. Henderson I, et al. Autologous chondrocyte implantation for treatment of focal chondral defects of the knee--a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee. 2005;12(3):209–16.

    Article  PubMed  Google Scholar 

  57. Henderson IJ, et al. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003;85(7):1060–6.

    Article  CAS  PubMed  Google Scholar 

  58. Lu Y, et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 2006;24(6):1261–70.

    Article  PubMed  Google Scholar 

  59. Farr J, et al. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg. 2012;25(1):23–9.

    Article  PubMed  Google Scholar 

  60. Cole BJ, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1170–9.

    Article  PubMed  Google Scholar 

  61. Bonner KF, Daner W, Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg. 2010;23(2):109–14.

    Article  PubMed  Google Scholar 

  62. Farr J, et al. Clinical Cartilage Restoration: Evolution and Overview. Clin Orthop Relat Res. 2011;469(10):2696–705.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42(6):1417–25.

    Article  PubMed  Google Scholar 

  64. Adkisson HD, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010;38(7):1324–33.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Namba RS, et al. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am. 1998;80(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  66. Hinckel BB, Gomoll AH. Patellofemoral cartilage rest oration: indications, techniques, and outcomes of autologous chondrocytes implantation, matrix-Induced chondrocyte implantation, and particulated Juvenile Allograft Cartilage. J Knee Surg. 2018;31(3):212–26.

    Article  PubMed  Google Scholar 

  67. Yanke AB, Tilton AK, Wetters NG, Merkow DB, Cole BJ, NT DN. Particulated Juvenile Cartilage Implant. Sports Med Arthrosc Rev. 2015;23(3):125–9.

    Article  PubMed  Google Scholar 

  68. Buckwalter JA, Bowman GN, Albright JP, Wolf BR, Bollier M. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J. 2014;34:44–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McCormick F, et al. Minced articular cartilage--basic science, surgical technique, and clinical application. Sports Med Arthrosc. 2008;16(4):217–20.

    Article  PubMed  Google Scholar 

  70. Sellers RS, et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 2000;82(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  71. Chu CR, et al. Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res. 1997;340:220–9.

    Article  Google Scholar 

  72. Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med. 2007;1(4):261–73.

    Article  CAS  PubMed  Google Scholar 

  73. Martin I, et al. Osteochondral tissue engineering. J Biomech. 2007;40(4):750–65.

    Article  PubMed  Google Scholar 

  74. Radhakrishnan J, Manigandan A, Chinnaswam YP, Subramanian A, Sethuraman S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials. 2018;162:82–98.

    Article  CAS  PubMed  Google Scholar 

  75. Schumann D, Ekaputra AK, Lam CX, Hutmacher DW. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Methods Mol Med. 2007;140:101–24.

    Article  CAS  PubMed  Google Scholar 

  76. Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. 2003;35(4):401–4.

    Article  CAS  PubMed  Google Scholar 

  77. Barbero A, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 2003;48(5):1315–25.

    Article  CAS  PubMed  Google Scholar 

  78. Orban JM, Marra KG, Hollinger JO. Composition options for tissue-engineered bone. Tissue Eng. 2002;8(4):529–39.

    Article  CAS  PubMed  Google Scholar 

  79. Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol. 2000;18(1):10–8.

    Google Scholar 

  80. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am. 1991;73(6):832–47.

    Article  CAS  PubMed  Google Scholar 

  81. Frenkel SR, et al. Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage. 2005;13(9):798–807.

    Google Scholar 

  82. DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 2000;8(5):309–34.

    Article  CAS  PubMed  Google Scholar 

  83. Reichert JC, et al. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Biomed Mater. 2009;4(6):065001.

    Article  CAS  PubMed  Google Scholar 

  84. Heymer A, et al. Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. J Tissue Eng Regen Med. 2009;3(5):389–97.

    Article  CAS  PubMed  Google Scholar 

  85. Baker MI, et al. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater. 2012;100(5):1451–7.

    Article  PubMed  CAS  Google Scholar 

  86. Sciarretta FV. 5 to 8 years follow-up of knee chondral defects treated by PVA-H hydrogel implants. Eur Rev Med Pharmacol Sci. 2013;17(22):3031–8.

    Google Scholar 

  87. U.S. Department of Health and Human Services Food and Drug Administration, C.o.D.E.a.R.C., Center for Biologics Evaluation and Research (CBER), Center for Devices and Radiological Health (CDRH). Guidance for industry patient-reported outcome measures: use in medical product development to support labeling claims. 2009 December 2009 August 12, 2011]; Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM193282.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan E. Gross MD, FRCSC, O ONT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogers, B.A., Chahal, J., Gross, A.E. (2020). Commercially Available Bioengineered Cartilage Grafts. In: Gahunia, H., Gross, A., Pritzker, K., Babyn, P., Murnaghan, L. (eds) Articular Cartilage of the Knee. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7587-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7587-7_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7585-3

  • Online ISBN: 978-1-4939-7587-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics