Skip to main content

Prostate Cancer Epigenome

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Prostate cancer is a major health burden within the ever-increasingly aging US population. The molecular mechanisms involved in prostate cancer are diverse and heterogeneous. In this context, epigenetic changes, both global and gene specific, are now an emerging alternate mechanism in disease initiation and progression. The three major risk factors in prostate cancer: age, geographic ancestry, and environment are all influenced by epigenetics and additional significant insight is required to gain an understanding of the underlying mechanisms. The androgen receptor and its downstream effector pathways, central to prostate cancer initiation and progression, are subject to a multitude of epigenetic alterations. In this review we focus on the global perspective of epigenetics and the use of recent next-generation sequencing platforms to interrogate epigenetic changes in the prostate cancer genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson WG, DeWeese TL, DeMarzo AM (2002) The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev 21:3–16

    Article  CAS  PubMed  Google Scholar 

  2. Hayes RB, Pottern LM, Strickler H, Rabkin C, Pope V, Swanson GM et al (2000) Sexual behaviour, STDs and risks for prostate cancer. Br J Cancer 82:718–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zheng SL, Liu W, Wiklund F, Dimitrov L, Balter K, Sun J et al (2006) A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study. Prostate 66:1556–1564

    Article  CAS  PubMed  Google Scholar 

  4. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J et al (2004) Human prostate cancer risk factors. Cancer 101:2371–2490

    Article  CAS  PubMed  Google Scholar 

  5. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci 89:3367–3371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Alberti C (2010) Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci 14:31–41

    CAS  PubMed  Google Scholar 

  7. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, et al (2010) SEER Cancer Statistics Review, 1975–2007. National Cancer Institute, Bethesda, MD, based on November 2009 SEER data submission, posted to the SEER web site, 2010. http://seer.cancer.gov/csr/1975_2007/

  8. Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P et al (2005) Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res 65:5730–5739

    Article  CAS  PubMed  Google Scholar 

  9. Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL et al (2010) MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5:e9427

    Article  PubMed Central  PubMed  Google Scholar 

  10. Abdulkadir SA (2005) Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Ann N Y Acad Sci 1059:33–40

    Article  CAS  PubMed  Google Scholar 

  11. Sharma P, Knowell AE, Chinaranagari S, Komaragiri S, Nagappan P, Patel D et al (2013) Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN. Mol Cancer 12:67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R et al (2013) Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 73:2718–2736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A et al (2013) The androgen receptor in health and disease. Annu Rev Physiol 75:201–224

    Article  CAS  PubMed  Google Scholar 

  14. Yadav N, Heemers HV (2012) Androgen action in the prostate gland. Minerva Urol Nefrol 64:35–49

    CAS  PubMed  Google Scholar 

  15. Yeh S, Niu Y, Miyamoto H, Chang T, Chang C (2009) Differential roles of androgen receptor in prostate development and cancer progression. In: Mohler J, Tindall D (eds) Androgen action in prostate cancer. Springer, New York, pp 73–89

    Chapter  Google Scholar 

  16. Wu C-T, Altuwaijri S, Ricke WA, Huang S-P, Yeh S, Zhang C et al (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci U S A 104:12679–12684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Simanainen U, Allan CM, Lim P, McPherson S, Jimenez M, Zajac JD et al (2007) Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 148:2264–2272

    Article  CAS  PubMed  Google Scholar 

  18. Boyd LK, Mao X, Lu Y-J (2012) The complexity of prostate cancer: genomic alterations and heterogeneity. Nat Rev Urol 9:652–664

    Article  PubMed  Google Scholar 

  19. Waddington C (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  20. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  21. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  22. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10:192–206

    Article  CAS  PubMed  Google Scholar 

  24. Lindahl Allen M, Koch CM, Clelland GK, Dunham I, Antoniou M (2009) DNA methylation-histone modification relationships across the desmin locus in human primary cells. BMC Mol Biol 10:51

    Article  PubMed  Google Scholar 

  25. Schaefer CB, Ooi SK, Bestor TH, Bourc’his D (2007) Epigenetic decisions in mammalian germ cells. Science 316:398–399

    Article  CAS  PubMed  Google Scholar 

  26. Yuan P, Han J, Guo G, Orlov YL, Huss M, Loh YH et al (2009) Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev 23:2507–2520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  28. Suvà ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339:1567–1570

    Article  PubMed  Google Scholar 

  29. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ et al (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60:753–766

    Article  CAS  PubMed  Google Scholar 

  30. Cooper CS, Foster CS (2009) Concepts of epigenetics in prostate cancer development. Br J Cancer 100:240–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    Article  CAS  PubMed  Google Scholar 

  32. Herceg Z, Vaissière T (2011) Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics 6:804–819

    Article  CAS  PubMed  Google Scholar 

  33. Martin FL (2013) Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility. ISRN Oncol 2013:624794

    PubMed Central  PubMed  Google Scholar 

  34. Rybicki B (2013) Epigenetics and racial disparities in prostate cancer. In: Sarkar FH (ed) Epigenetics and cancer. Springer, Netherlands, pp 151–166

    Chapter  Google Scholar 

  35. Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang BD et al (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16:3539–3547

    Article  CAS  PubMed  Google Scholar 

  36. Dobosy JR, Selker EU (2001) Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci 58:721–727

    Article  CAS  PubMed  Google Scholar 

  37. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  39. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  40. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  CAS  PubMed  Google Scholar 

  41. Hu X, Lazar MA (2000) Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 11:6–10

    Article  CAS  PubMed  Google Scholar 

  42. Varier RA, Timmers HT (1815) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 2011:75–89

    Google Scholar 

  43. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  44. Balch C, Nephew KP, Huang THM, Bapat SA (2007) Epigenetic “bivalently marked” process of cancer stem cell-driven tumorigenesis. Bioessays 29:842–845

    Article  PubMed  Google Scholar 

  45. Chen Z, Wang L, Wang Q, Li W (2010) Histone modifications and chromatin organization in prostate cancer. Epigenomics 2:551–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Peng L, Seto E (2011) Deacetylation of nonhistone proteins by HDACs and the implications in cancer. In: Yao T-P, Seto E (eds) Histone deacetylases: the biology and clinical implication. Springer, Berlin, pp 39–56

    Chapter  Google Scholar 

  47. Abbas A, Gupta S (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3:300–309

    Article  PubMed Central  PubMed  Google Scholar 

  48. Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D et al (2003) Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23:8563–8575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Medvedeva YA, Fridman MV, Oparina NJ, Malko DB, Ermakova EO, Kulakovskiy IV et al (2010) Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics 11:48

    Article  PubMed Central  PubMed  Google Scholar 

  50. Patra SK, Patra A, Zhao H, Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33:163–171

    Article  CAS  PubMed  Google Scholar 

  51. Majumdar S, Buckles E, Estrada J, Koochekpour S (2011) Aberrant DNA methylation and prostate cancer. Curr Genomics 12:486–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  53. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    Article  CAS  PubMed  Google Scholar 

  54. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  55. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  CAS  PubMed  Google Scholar 

  56. Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C et al (2009) DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res 69:7412–7421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–7284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  CAS  PubMed  Google Scholar 

  60. Kondo Y (2009) Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50:455–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  CAS  PubMed  Google Scholar 

  62. Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gütgemann I et al (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70:61–69

    Article  CAS  PubMed  Google Scholar 

  63. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Yang YA, Yu J (2013) EZH2, an epigenetic driver of prostate cancer. Protein Cell 4:331–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444

    Article  CAS  PubMed  Google Scholar 

  66. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26:4590–4595

    Article  CAS  PubMed  Google Scholar 

  68. Shin YJ, Kim JH (2012) The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One 7:e30393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S et al (2012) Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 72:3091–3104

    Article  CAS  PubMed  Google Scholar 

  70. Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J (2012) Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med 1(2):176–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Carey JP, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J (2009) Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer 9:173

    Article  PubMed Central  PubMed  Google Scholar 

  72. Crea F, Sun L, Mai A, Chiang Y, Farrar W, Danesi R et al (2012) The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 11:1–10

    Article  Google Scholar 

  73. Gao L, Alumkal J (2010) Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 5:100–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Cai C, Yuan X, Balk SP (2013) Androgen receptor epigenetics. Transl Androl Urol 2:148–157

    Google Scholar 

  75. Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12:283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  77. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338:1465–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wang T, Liu Q, Li X, Wang X, Li J, Zhu X et al (2013) RRBS-analyser: a comprehensive web server for reduced representation bisulfite sequencing data analysis. Hum Mutat 34:1606–1610

    Article  PubMed  Google Scholar 

  79. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM et al (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41:D56–D63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Hirst M, Marra MA (2010) Next generation sequencing based approaches to epigenomics. Brief Funct Genomics 9:455–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Kim J, Yu J (1825) Interrogating genomic and epigenomic data to understand prostate cancer. Biochim Biophys Acta 2012:186–196

    Google Scholar 

  82. Fouse SD, Nagarajan RO, Costello JF (2010) Genome-scale DNA methylation analysis. Epigenomics 2:105–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Chaudhary Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chinaranagari, S., Sharma, P., Bowen, N.J., Chaudhary, J. (2015). Prostate Cancer Epigenome. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics