Skip to main content

Paediatric Solid Formulations

  • Chapter
  • First Online:
Pediatric Formulations

Abstract

Oral drug delivery remains the most widely accepted and preferred route of administration in paediatric and adult populations alike, both from a manufacturing and end-user perspective [1, 2]. The lack of appropriate formulations available for children is a well-acknowledged problem [3–6], as is the paucity of evidence to support formulation selection and design [7]. While liquid medicines have historically been considered the “gold-standard” in paediatrics, the emergence of innovative drug delivery technologies has led to a paradigm shift towards research and development into solid oral dosage forms for use across this heterogeneous population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (WHO) (2012) Annex 5 Development of paediatric medicines: points to consider in formulation. Forty-sixth Rep. WHO Expert Comm. Specif. Pharm. Prep. World Health Organization, Geneva, p 235

    Google Scholar 

  2. Mrsny RJ (2012) Oral drug delivery research in Europe. J Control Release 161:247–253. doi:10.1016/j.jconrel.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  3. Nahata MC (1999) Lack of pediatric drug formulations. Pediatrics 104:607–609

    CAS  PubMed  Google Scholar 

  4. Standing JF, Tuleu C (2005) Paediatric formulations—getting to the heart of the problem. Int J Pharm 300:56–66. doi:10.1016/j.ijpharm.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Schirm E, Tobi H, de Vries T et al (2003) Lack of appropriate formulations of medicines for children in the community. Acta Paediatr 92:1486–1489. doi:10.1111/j.1651-2227.2003.tb00837.x

    Article  CAS  PubMed  Google Scholar 

  6. Van Riet-Nales DA, de Jager K, Schobben AFAM et al (2011) The availability and age-appropriateness of medicines authorized for children in the Netherlands. Br J Clin Pharmacol 72:465–473. doi:10.1111/j.1365-2125.2011.03982.x

    Article  PubMed  Google Scholar 

  7. Ranmal S, Tuleu C (2013) Demonstrating evidence of acceptability: The “Catch-22” of pediatric formulation development. Clin Pharmacol Ther 94:582–584. doi:10.1038/clpt.2013.154

    Article  CAS  PubMed  Google Scholar 

  8. European Medicines Agency (EMA) (2013) Guideline on pharmaceutical development of medicines for paediatric use (Draft) (EMA/CHMP/QWP/805880/2012 Rev. 1). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/01/WC500137023.pdf. Accessed 1 June 2013

  9. Krause J, Breitkreutz J (2008) Improving drug delivery in paediatric medicine. Pharm Med 22:41–50, doi:10.1007/BF03256681

    Article  Google Scholar 

  10. Kristensen HG (2012) WHO guideline development of paediatric medicines: points to consider in pharmaceutical development. Int J Pharm 435:134–135. doi:10.1016/j.ijpharm.2012.05.054

    Article  CAS  PubMed  Google Scholar 

  11. Sam T, Ernest TB, Walsh J et al (2012) A benefit/risk approach towards selecting appropriate pharmaceutical dosage forms – an application for paediatric dosage form selection. Int J Pharm 435:115–123. doi:10.1016/j.ijpharm.2012.05.024

    Article  CAS  PubMed  Google Scholar 

  12. Ernest TB, Craig J, Nunn A et al (2012) Preparation of medicines for children – a hierarchy of classification. Int J Pharm 435:124–130. doi:10.1016/j.ijpharm.2012.05.070

    Article  CAS  PubMed  Google Scholar 

  13. Richey RH, Craig JV, Shah UU et al (2012) The manipulation of drugs to obtain the required dose: systematic review. J Adv Nurs 68:2103–2112. doi:10.1111/j.1365-2648.2011.05916.x

    Article  PubMed  Google Scholar 

  14. Skwierczynski C, Conroy S (2008) How long does it take to administer oral medicines to children? Paediatr Perinat Drug Ther 8:145–149. doi:10.1185/146300908X254206

    Article  Google Scholar 

  15. Ernest TB, Elder DP, Martini LG et al (2007) Developing paediatric medicines: identifying the needs and recognizing the challenges. J Pharm Pharmacol 59:1043–1055. doi:10.1211/jpp.59.8.0001

    Article  CAS  PubMed  Google Scholar 

  16. Fabiano V, Mameli C, Zuccotti GV (2011) Paediatric pharmacology: remember the excipients. Pharmacol Res 63:362–365. doi:10.1016/j.phrs.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Salunke S, Giacoia G, Tuleu C (2012) The STEP (Safety and Toxicity of Excipients for Paediatrics) database. Part 1—A need assessment study. Int J Pharm 435:101–111. doi:10.1016/j.ijpharm.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  18. Cram A, Breitkreutz J, Desset-Brèthes S et al (2009) Challenges of developing palatable oral paediatric formulations. Int J Pharm 365:1–3. doi:10.1016/j.ijpharm.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  19. Baguley D, Lim E, Bevan A et al (2012) Prescribing for children – taste and palatability affect adherence to antibiotics: a review. Arch Dis Child 97:293–297. doi:10.1136/archdischild-2011-300909

    Article  PubMed  Google Scholar 

  20. European Medicines Agency Committee for Medicinal Products for Human Use (CHMP) (2006) Reflection paper: Formulations of choice for the paediatric population. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003782.pdf. Accessed 1 June 2013

  21. Yin HS, Wolf MS, Dreyer BP et al (2010) Evaluation of consistency in dosing directions and measuring devices for pediatric nonprescription liquid medications. JAMA 304:2595–2602. doi:10.1001/jama.2010.1797

    Article  PubMed  Google Scholar 

  22. Walsh J, Bickmann D, Breitkreutz J et al (2011) Delivery devices for the administration of paediatric formulations: overview of current practice, challenges and recent developments. Int J Pharm 415:221–231. doi:10.1016/j.ijpharm.2011.05.048

    Article  CAS  PubMed  Google Scholar 

  23. Ryu GS, Lee YJ (2012) Analysis of liquid medication dose errors made by patients and caregivers using alternative measuring devices. J Manag Care Pharm 18:439–445

    PubMed  Google Scholar 

  24. Yin HS, Mendelsohn AL, Wolf MS et al (2010) Parents’ medication administration errors: role of dosing instruments and health literacy. Arch Pediatr Adolesc Med 164:181–186. doi:10.1001/archpediatrics.2009.269

    Article  PubMed  Google Scholar 

  25. Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2012) Guidance for industry: Safety considerations for product design to minimize medication errors (Draft Guidance). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM331810.pdf. Accessed 1 June 2013

  26. Craig SR, Adams LV, Spielberg SP, Campbell B (2009) Pediatric therapeutics and medicine administration in resource-poor settings: a review of barriers and an agenda for interdisciplinary approaches to improving outcomes. Soc Sci Med 69:1681–1690. doi:10.1016/j.socscimed.2009.08.024

    Article  PubMed  Google Scholar 

  27. Sosnik A, Seremeta KP, Imperiale JC, Chiappetta DA (2012) Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases. Expert Opin Drug Deliv 9:303–323. doi:10.1517/17425247.2012.655268

    Article  CAS  PubMed  Google Scholar 

  28. Hill SR (2012) Putting the priorities first: medicines for maternal and child health. Bull World Health Organ 90:236–238. doi:10.2471/BLT.11.088658

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nunn T, Williams J (2005) Formulation of medicines for children. Br J Clin Pharmacol 59:674–676. doi:10.1111/j.1365-2125.2005.02410.x

    Article  PubMed  Google Scholar 

  30. Nahirya-Ntege P, Cook A, Vhembo T et al (2012) Young HIV-infected children and their adult caregivers prefer tablets to syrup antiretroviral medications in Africa. PLoS ONE 7:e36186. doi:10.1371/journal.pone.0036186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ansah EK, Gyapong JO, Agyepong IA, Evans DB (2001) Improving adherence to malaria treatment for children: the use of pre-packed chloroquine tablets vs. chloroquine syrup. Trop Med Int Heal 6:496–504. doi:10.1046/j.1365-3156.2001.00740.x

    Article  CAS  Google Scholar 

  32. Bagenda A, Barlow-Mosha L, Bagenda D et al (2011) Adherence to tablet and liquid formulations of antiretroviral medication for paediatric HIV treatment at an urban clinic in Uganda. Ann Trop Paediatr 31:235–245. doi:10.1179/1465328111Y.0000000025

    Article  CAS  PubMed  Google Scholar 

  33. Adams LV, Craig SR, Mmbaga EJ et al (2013) Children’s medicines in Tanzania: a national survey of administration practices and preferences. PLoS ONE 8:e58303. doi:10.1371/journal.pone.0058303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Abdulla S, Amuri B, Kabanywanyi AM et al (2010) Early clinical development of artemether-lumefantrine dispersible tablet: palatability of three flavours and bioavailability in healthy subjects. Malar J 9:253. doi:10.1186/1475-2875-9-253

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hamed K, Grueninger H (2012) Coartem(®): a decade of patient-centric malaria management. Expert Rev Anti Infect Ther 10:645–659. doi:10.1586/eri.12.51

    Article  CAS  PubMed  Google Scholar 

  36. Kayitare E, Vervaet C, Ntawukulilyayo JD et al (2009) Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications. Int J Pharm 370:41–46. doi:10.1016/j.ijpharm.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  37. Ceschi A, Hofer KE, Rauber-Lüthy C, Kupferschmidt H (2011) Paracetamol orodispersible tablets: a risk for severe poisoning in children? Eur J Clin Pharmacol 67:97–99. doi:10.1007/s00228-010-0943-x

    Article  CAS  PubMed  Google Scholar 

  38. Chaudhary SA, Shahiwala AF (2010) Medicated chewing gum—a potential drug delivery system. Expert Opin Drug Deliv 7:871–885. doi:10.1517/17425247.2010.493554

    Article  CAS  PubMed  Google Scholar 

  39. Lam HS, Chow CM, Poon WT et al (2006) Risk of vitamin A toxicity from candy-like chewable vitamin supplements for children. Pediatrics 118:820–824. doi:10.1542/peds.2006-0167

    Article  PubMed  Google Scholar 

  40. Michele TM, Knorr B, Vadas EB, Reiss TF (2002) Safety of chewable tablets for children. J Asthma 39:391–403. doi:10.1081/JAS-120004032

    Article  PubMed  Google Scholar 

  41. Thomson SA, Tuleu C, Wong ICK et al (2009) Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics 123:e235–e238. doi:10.1542/peds.2008-2059

    Article  PubMed  Google Scholar 

  42. Spomer N, Klingmann V, Stoltenberg I et al (2012) Acceptance of uncoated mini-tablets in young children: results from a prospective exploratory cross-over study. Arch Dis Child 97:283–286. doi:10.1136/archdischild-2011-300958

    Article  PubMed  Google Scholar 

  43. Meltzer EO, Welch MJ, Ostrom NK (2006) Pill swallowing ability and training in children 6 to 11 years of age. Clin Pediatr (Phila) 45:725–733. doi:10.1177/0009922806292786

    Article  CAS  Google Scholar 

  44. Yeung VW, Wong ICK (2005) When do children convert from liquid antiretroviral to solid formulations? Pharm World Sci 27:399–402. doi:10.1007/s11096-005-7911-z

    Article  PubMed  Google Scholar 

  45. European Medicines Agency (EMA) (2011) Guideline on pharmaceutical development of medicines for paediatric use (Draft) (EMA/CHMP/QWP/180157/2011). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/06/WC500107908.pdf. Accessed 1 June 2013

  46. Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2013) Guidance for industry: tablet scoring: nomenclature, labeling, and data for evaluation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM269921.pdf. Accessed 1 June 2013

  47. Ghuman JK, Cataldo MD, Beck MH, Slifer KJ (2004) Behavioral training for pill-swallowing difficulties in young children with autistic disorder. J Child Adolesc Psychopharmacol 14:601–611. doi:10.1089/cap.2004.14.601

    Article  PubMed  Google Scholar 

  48. Garvie PA, Lensing S, Rai SN (2007) Efficacy of a pill-swallowing training intervention to improve antiretroviral medication adherence in pediatric patients with HIV/AIDS. Pediatrics 119:e893–e899. doi:10.1542/peds.2006-1488

    Article  PubMed  Google Scholar 

  49. Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2012) Guidance for industry: size of beads in drug products labeled for sprinkle. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM240243.pdf. Accessed 1 June 2013

  50. Van de Vijver E, Desager K, Mulberg AE et al (2011) Treatment of infants and toddlers with cystic fibrosis-related pancreatic insufficiency and fat malabsorption with pancrelipase MT. J Pediatr Gastroenterol Nutr 53:61–64. doi:10.1097/MPG.0b013e31820e208e

    Article  PubMed  Google Scholar 

  51. De-Regil LM, Suchdev PS, Vist GE et al (2011) Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Cochrane Database Syst Rev. doi:10.1002/14651858.CD008959.pub2

    Google Scholar 

  52. Haberer JE, Cook A, Walker AS et al (2011) Excellent adherence to antiretrovirals in HIV+ Zambian children is compromised by disrupted routine, HIV nondisclosure, and paradoxical income effects. PLoS ONE 6:e18505. doi:10.1371/journal.pone.0018505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. O’Brien DP, Sauvageot D, Zachariah R, Humblet P (2006) In resource-limited settings good early outcomes can be achieved in children using adult fixed-dose combination antiretroviral therapy. AIDS 20:1955–1960. doi:10.1097/01.aids.0000247117.66585.ce

    Article  PubMed  Google Scholar 

  54. Stoltenberg I, Breitkreutz J (2011) Orally disintegrating mini-tablets (ODMTs) – a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm 78:462–469. doi:10.1016/j.ejpb.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  55. Lopes CM, Sousa Lobo JM, Costa P, Pinto JF (2006) Directly compressed mini matrix tablets containing ibuprofen: preparation and evaluation of sustained release. Drug Dev Ind Pharm 32:95–106. doi:10.1080/03639040500388482

    Article  CAS  PubMed  Google Scholar 

  56. Roberts M, Vellucci D, Mostafa S et al (2012) Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets. Drug Dev Ind Pharm 38:1068–1076. doi:10.3109/03639045.2011.638302

    Article  CAS  PubMed  Google Scholar 

  57. Bowles A, Keane J, Ernest T et al (2010) Specific aspects of gastro-intestinal transit in children for drug delivery design. Int J Pharm 395:37–43. doi:10.1016/j.ijpharm.2010.04.048

    Article  CAS  PubMed  Google Scholar 

  58. Batchelor H, Kendall R, Desset-Brethes S et al (2013) Application of in vitro biopharmaceutical methods in development of immediate release oral dosage forms intended for paediatric patients. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2013.04.015

    PubMed  Google Scholar 

  59. De Mey C, Dimitrova V, Lennartz P, Wangemann M (2012) Bioequivalence of a novel minitablet formulation of levetiracetam. Arzneimittelforschung 62:94–98. doi:10.1055/s-0031-1297965

    Article  PubMed  Google Scholar 

  60. Tissen C, Woertz K, Breitkreutz J, Kleinebudde P (2011) Development of mini-tablets with 1 mm and 2 mm diameter. Int J Pharm 416:164–170. doi:10.1016/j.ijpharm.2011.06.027

    Article  CAS  PubMed  Google Scholar 

  61. United States National Library of Medicines, National Institute of Health Pillbox (Beta Version). http://pillbox.nlm.nih.gov/. Accessed 1 June 2013

  62. Train D (1956) An investigation into the compaction of powders. J Pharm Pharmacol 8:745–761

    Article  CAS  PubMed  Google Scholar 

  63. Lennartz P, Mielck JB (1998) Minitabletting: improving the compactability of paracetamol powder mixtures. Int J Pharm 173:75–85. doi:10.1016/S0378-5173(98)00206-3

    Article  CAS  Google Scholar 

  64. Eiliazadeh B, Pitt K, Briscoe B (2004) Effects of punch geometry on powder movement during pharmaceutical tabletting processes. Int J Solids Struct 41:5967–5977. doi:10.1016/j.ijsolstr.2004.05.055

    Article  Google Scholar 

  65. Sinka IC, Burch SF, Tweed JH, Cunningham JC (2004) Measurement of density variations in tablets using X-ray computed tomography. Int J Pharm 271:215–224. doi:10.1016/j.ijpharm.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  66. Kachrimanis K, Malamataris S (2005) Compact size and mechanical strength of pharmaceutical diluents. Eur J Pharm Sci 24:169–177. doi:10.1016/j.ejps.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  67. Flemming J, Mielck JB (1995) Requirements for the production of microtablets: suitability of direct-compression excipients estimated from powder characteristics and flow rates. Drug Dev Ind Pharm 21:2239–2251. doi:10.3109/03639049509065904

    Article  CAS  Google Scholar 

  68. Kachrimanis K, Petrides M, Malamataris S (2005) Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting. Int J Pharm 303:72–80. doi:10.1016/j.ijpharm.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  69. Thomson SA (2009) An investigation in to the compaction and clinical potential of mini-tablets for paediatric drug delivery. Ph.D. Thesis. University of London, London, p 282

    Google Scholar 

  70. De Brabander C, Vervaet C, Fiermans L, Remon JP (2000) Matrix mini-tablets based on starch/microcrystalline wax mixtures. Int J Pharm 199:195–203. doi:10.1016/S0378-5173(00)00383-5

    Article  PubMed  Google Scholar 

  71. Van Riet-Nales DA, de Neef BJ, Schobben AFAM et al (2013) Acceptability of different oral formulations in infants and preschool children. Arch Dis Child 98(9):725–731. doi:10.1136/archdischild-2012-303303

    Article  PubMed Central  PubMed  Google Scholar 

  72. Standing JF, Khaki ZF, Wong ICK (2005) Poor formulation information in published pediatric drug trials. Pediatrics 116:e559–e562. doi:10.1542/peds.2005-0327

    Article  PubMed  Google Scholar 

  73. Pandit S, Shah U, Kirby DJ et al (2010) Inappropriate oral formulations and information in paediatric trials. Arch Dis Child 95:754–756. doi:10.1136/adc.2009.175661

    Article  PubMed  Google Scholar 

  74. Van Riet-Nales DA, Schobben A, Egberts TCG, Rademaker CMA (2010) Effects of the pharmaceutical technologic aspects of oral pediatric drugs on patient-related outcomes: a systematic literature review. Clin Ther 32:924–938. doi:10.1016/j.clinthera.2010.05.005

    Article  PubMed  Google Scholar 

  75. Waning B, Diedrichsen E, Jambert E et al (2010) The global pediatric antiretroviral market: analyses of product availability and utilization reveal challenges for development of pediatric formulations and HIV/AIDS treatment in children. BMC Pediatr 10:74. doi:10.1186/1471-2431-10-74

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Tuleu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Ranmal, S.R., Barker, S.A., Tuleu, C. (2014). Paediatric Solid Formulations. In: Bar-Shalom, D., Rose, K. (eds) Pediatric Formulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8011-3_11

Download citation

Publish with us

Policies and ethics