Skip to main content

The Role of Transporters in Drug Development: Regulatory Science Perspectives from the FDA

  • Chapter
  • First Online:
Transporters in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 7))

Abstract

Pharmacokinetic drug interactions can lead to altered systemic exposure and varied drug response. Evaluation of a new molecular entity’s (NME’s) drug–drug interaction (DDI) potential is therefore an integral part of drug development and regulatory review prior to its market approval. Transporters are expressed in varying abundance in all tissues in the body where they govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant interactions mediated by transporters are of increasing interest in drug development. Research in this emerging area has revealed that drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism, and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The newly published draft drug interaction guidance by the Food and Drug Administration (FDA) in 2012 includes updated recommendations in addressing transporter-mediated drug interactions with various decision trees to help guide drug development and regulatory review. This chapter discusses, from a scientific perspective, role of transporters in drug development with a focus on transporter-mediated DDIs. First, transporter-related recommendations in the recent FDA’s draft drug interaction guidance are discussed. Second, additional transporters that are emerging to be important in drug disposition are discussed. Third, recent review examples and transporter-related labelings are presented. Finally, future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ADME:

Absorption, distribution, metabolism, and excretion

AUC:

Area under the plasma concentration-time curve

BCRP:

Breast cancer resistance protein

BSEP:

Bile salt export pump

CLr :

Renal clearance

CLtotal :

Total clearance

C max :

Maximal plasma concentration

cMOAT:

Canalicular multispecific organic anion transporter (also named MRP2)

DDI:

Drug–drug interaction

F a F g :

Fraction of dose of inhibitor which is absorbed

FDA:

Food and Drug Administration

f u :

Fraction unbound

GFR:

Glomerular filtration rate

[I]1 :

Mean steady state total (free and bound) C max following the highest proposed clinical dose

[I]2 :

Dose of inhibitor (in mol)/250 mL

I in,max :

Estimated maximum inhibitor concentration at the inlet to the liver

ITC:

International transporter consortium

K a :

Absorption rate constant

LST:

Liver-specific transporter

MATE:

Multidrug and toxic compound extrusion transporter

MRP:

Multidrug resistance-associated protein

NDA:

New drug application

NME:

New molecular entity

OAT:

Organic anion transporter

OATP:

Organic anion transporting polypeptide

OCT:

Organic cation transporter

PD:

Pharmacodynamics

PFiC2:

Progressive familial intrahepatic cholestasis type 2

P-gp:

P-glycoprotein

PK:

Pharmacokinetics

PMC:

Postmarketing commitment

PMR:

Postmarketing requirement

Q h :

Estimated hepatic blood flow

SGLT2:

Sodium-glucose cotransporter 2

SLC:

Solute carrier

TEA:

Tetraethyl ammonium

References

  • Abel S, Nichols DJ, Brearley CJ, Eve MD (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agarwal S, Zhang L, Huang S-M (2011) Relevance and value of in vitro P-gp inhibition data for new molecular entities. Clin Pharmacol Ther 89 (Suppl. 1):S40 (Abstract)

    Google Scholar 

  • Agarwal S, Arya V, Zhang L (2013) Review of P-gp inhibition data in recently approved new drug applications: utility of the proposed [I1]/IC50 and [I2]/IC50 criteria in the P-gp decision tree. J Clin Pharmacol 53:228–233 (Feb 7, 2012, Epub ahead of print]

    Google Scholar 

  • Agarwal S, Chinn L, Zhang L (2013) An overview of transporter information in package inserts of recently approved new molecular entities. Pharm Res 30(3):899–910. doi:10.1007/s11095-012-0924-0

    Article  CAS  PubMed  Google Scholar 

  • Annaert P, Ye ZW, Stieger B, Augustijns P (2010) Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 40:163–176

    Article  CAS  PubMed  Google Scholar 

  • Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y, Palm JE, Stieger B, Evers R, On behalf of International Transporter Consortium (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112

    Google Scholar 

  • Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, Mefford JA, Hesselson SE, Schlessinger A, Jenkins G, Castro RA, Johns SJ, Stryke D, Sali A, Ferrin TE, Witte JS, Kwok PY, Roden DM, Wilke RA, McCarty CA, Davis RL, Giacomini KM (2011) A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther 90:674–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Cundy KC (1999) Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin Pharmacokinet 36:127–143

    Article  CAS  PubMed  Google Scholar 

  • Damme K, Nies AT, Schaeffeler E, Schwab M (2011) Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab Rev 43:499–523

    Article  CAS  PubMed  Google Scholar 

  • Drug information in drugs@FDA. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Accessed 18 Feb 2012

  • Fan Y, Agarwal S, Zhang L, Lesko LJ, Huang S-M (2012) Review of transporter-related post-marketing requirement (PMR)/post-marketing commitment (PMC) study reports. Clin Pharmacol Ther 89 (Suppl. 1):S37 (Abstract)

    Google Scholar 

  • FDA Drug Development and Drug Interactions Website. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm. Accessed 18 Feb 2012

  • FDA drug safety communication: interactions between certain HIV or hepatitis C drugs and cholesterol-lowering statin drugs can increase the risk of muscle injury. http://www.fda.gov/Drugs/DrugSafety/ucm293877.htm. Accessed 15 Jul 2012

  • Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  • Guidance for industry: drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf. Accessed 18 Feb 2012

  • Guidance for industry: postmarketing studies and clinical trials-implementation of Section 505(o)(3) of the Federal Food, Drug, and Cosmetic Act. 2011

    Google Scholar 

  • Hager WD, Fenster P, Mayersohn M, Perrier D, Graves P, Marcus FI, Goldman S (1979) Digoxin-quinidine interaction pharmacokinetic evaluation. N Engl J Med 300:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Hedman M, Neuvonen PJ, Neuvonen M, Holmberg C, Antikainen M (2004) Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin Pharmacol Ther 75:101–109

    Article  CAS  PubMed  Google Scholar 

  • Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, Zhang L, On behalf of International Transporter Consortium (2013) Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther 94:52–63

    Google Scholar 

  • Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314:876–882

    Article  CAS  PubMed  Google Scholar 

  • Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I (2013) The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci 2013 May 24. doi: 10.1002/jps.23570. [Epub ahead of print]

    Google Scholar 

  • Huang SM, Rowland M (2012) The role of physiologically based pharmacokinetic modeling in regulatory review. Clin Pharmacol Ther 91:542–549

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Woodcock J (2010) Transporters in drug development: advancing on the Critical Path. Nat Rev Drug Discov 9:175–176

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Zhang L, Giacomini KM (2010) The International Transporter Consortium: a collaborative group of scientists from academia, industry, and the FDA. Clin Pharmacol Ther 87:32–36

    Article  PubMed  Google Scholar 

  • Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van GH, Thompson RJ, Muller M (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Jerling M (2006) Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet 45:469–491

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy-Thandavan S, Gurav A, Gnanaprakasam JP, Singh N, Schoenlein PV, Prasad PD, Thangaraju M, Ganapathy V (2011) SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem 286:31830–31838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keppler D (2011) Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 201:299–323

    Article  CAS  PubMed  Google Scholar 

  • Kiser JJ, Gerber JG, Predhomme JA, Wolfe P, Flynn DM, Hoody DW (2008) Drug/drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 47:570–578

    Article  CAS  PubMed  Google Scholar 

  • Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:1–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, Moriyama Y, Omote H (2011) Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol 43:913–918

    Article  CAS  PubMed  Google Scholar 

  • Kruijtzer CM, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JH (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, Inoue K, Yuasa H, Sugiyama Y (2011) Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 89:837–844

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, Fukizawa S, Morimoto N, Ieiri I, Morishita M, Sumita K, Mayahara H, Fujita T, Maeda K, Sugiyama Y (2012) Pharmacokinetic interaction study of sulfasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 166(6):1793–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laskin OL, de Miranda P, King DH, Page DA, Longstreth JA, Rocco L, Lietman PS (1982) Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother 21:804–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Anderson GD, Wang J (2006) Drug-drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2:505–532

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, Ogawa O, Inui K (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 17:2127–2135

    Article  CAS  PubMed  Google Scholar 

  • Mischler TW, Sugerman AA, Willard DA, Brannick LJ, Neiss ES (1974) Influence of probenecid and food on the bioavailability of cephradine in normal male subjects. J Clin Pharmacol 14:604–611

    Article  CAS  PubMed  Google Scholar 

  • Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW Jr, Lightfoot-Dunn R, Hamadeh HK (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118:485–500

    Article  CAS  PubMed  Google Scholar 

  • Mukwaya G, MacGregor T, Hoelscher D, Heming T, Legg D, Kavanaugh K, Johnson P, Sabo JP, McCallister S (2005) Interaction of ritonavir-boosted tipranavir with loperamide does not result in loperamide-associated neurologic side effects in healthy volunteers. Antimicrob Agents Chemother 49:4903–4910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80:565–581

    Article  CAS  PubMed  Google Scholar 

  • Niemi M (2010) Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 87:130–133

    Article  CAS  PubMed  Google Scholar 

  • Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Mullhaupt B, Meier PJ, Pauli-Magnus C (2005) Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 43:536–543

    Article  CAS  PubMed  Google Scholar 

  • Ogimura E, Sekine S, Horie T (2011) Bile salt export pump inhibitors are associated with bile acid-dependent drug-induced toxicity in sandwich-cultured hepatocytes. Biochem Biophys Res Commun 416:313–317

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA 102:17923–17928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP (1997) A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 25:1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Pfister M, Whaley JM, Zhang L, List JF (2011) Inhibition of SGLT2: a novel strategy for treatment of type 2 diabetes mellitus. Clin Pharmacol Ther 89:621–625

    Article  CAS  PubMed  Google Scholar 

  • Rameis H (1985) Quinidine-digoxin interaction: are the pharmacokinetics of both drugs altered? Int J Clin Pharmacol Ther Toxicol 23:145–153

    CAS  PubMed  Google Scholar 

  • Russel FG, Koenderink JB, Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29:200–207

    Article  CAS  PubMed  Google Scholar 

  • Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, Kumar A, Fridland A (1999) MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 5:1048–1051

    Article  CAS  PubMed  Google Scholar 

  • Simonson SG, Raza A, Martin PD, Mitchell PD, Jarcho JA, Brown CD, Windass AS, Schneck DW (2004) Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 76:167–177

    Article  CAS  PubMed  Google Scholar 

  • Somogyi A, Muirhead M (1987) Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet 12:321–366

    Article  CAS  PubMed  Google Scholar 

  • Somogyi A, Stockley C, Keal J, Rolan P, Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somogyi AA, Bochner F, Sallustio BC (1992) Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharmacol Ther 51:379–387

    Article  CAS  PubMed  Google Scholar 

  • Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ (1998) A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20:233–238

    Article  CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371

    Article  CAS  PubMed  Google Scholar 

  • Tweedie D, Polli JW, Berglund EG, Huang SM, Zhang L, Poirier A, Chu X, Feng B, On behalf of International Transporter Consortium (2013) Transporter studies in drug development: experience to date and follow-up on decision trees from the international transporter consortium. Clin Pharmacol Ther 94:113–125

    Google Scholar 

  • Vaidyanathan J, Arya V, Agarwal S, de L T Vieira M, Zhao P, Huang S-M, Zhang L (2012) What criteria may be appropriate in determining the need for in vivo evaluation of a new molecular entity’s (NME’s) potential to inhibit OATP1B1 (Organic Anion Transporting Polypeptide 1B1). Clin Pharmacol Ther 91(Suppl. 1):S53 (abstract)

    Google Scholar 

  • Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y (2010) Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215–222

    Article  CAS  PubMed  Google Scholar 

  • Xia CQ, Liu N, Miwa GT, Gan LS (2007) Interactions of cyclosporin A with breast cancer resistance protein. Drug Metab Dispos 35:576–582

    Article  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Tweedie DJ, Giacomini KM, Hillgren KM, On behalf of International Transporter Consortium (2012) Highlights from the International Transporter Consortium (ITC) 2nd workshop. Clin Pharmacol Ther 92:553–556

    Article  CAS  PubMed  Google Scholar 

  • Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, Tephly T, Dahan A, Beijnen JH, Borst P (2005) Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci USA 102:7274–7279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Huang SM, Lesko LJ (2011) Transporter-mediated drug-drug interactions. Clin Pharmacol Ther 89:481–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Reynolds KS, Zhao P, Huang SM (2010) Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicol Appl Pharmacol 243:134–145

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, Booth BP, Rahman NA, Reynolds KS, Gil BE, Lesko LJ, Huang SM (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89:259–267

    Article  CAS  PubMed  Google Scholar 

  • Zheng HX, Huang Y, Frassetto LA, Benet LZ (2009) Elucidating rifampin’s inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin Pharmacol Ther 85:78–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank members of the FDA Office of Clinical Pharmacology Transporter Scientific Interest Group for their support.

Disclaimer The views presents in this chapter are those of authors and do not necessarily reflect the official view of the FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, L., Huang, SM. (2013). The Role of Transporters in Drug Development: Regulatory Science Perspectives from the FDA. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_11

Download citation

Publish with us

Policies and ethics