Skip to main content

Hasse Diagram Technique Contributions to Environmental Risk Assessment

  • Chapter
  • First Online:
Multi-indicator Systems and Modelling in Partial Order

Abstract

This chapter deals with the successive application of self-organizing map (SOM) classification and Hasse diagram technique (HDT) as chemometric tools for assessment of river water and sediment quality. Both studies are carried out by using long-term water quality monitoring data from the Struma River catchment, Bulgaria and lake sediment samples from Mar Menor lagoon in Spain. The advantages of the SOM algorithm for advanced visualization and classification of large datasets are used for proper selection of chemical parameters being most effective in quality assessment combined with some state directives for surface water quality parameters in the river water study and as preprocessing procedure of the initial sediment data matrix. The simultaneous application of the SOM methodology or legislation norms with Hasse diagram technique allows to visualize the spatial and temporal evolution of water quality parameters or to reveal specific sediment pollution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Astel A, Glosinska G, Sobczynski T, Boszke L, Simeonov V, Siepak J (2006) Chemometrics in assessment of sustainable development rule implementation. Cent Eur J Chem 4:543–664

    Article  Google Scholar 

  • Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41:4566–4578

    Article  Google Scholar 

  • Aulinger A, Einax JW, Prange A (2004) Setup and optimization of a PLS regression model for predicting element contents in river sediments. Chemom Intell Lab Syst 72:35–41

    Article  Google Scholar 

  • Brodnjak-Voncina D, Dobcnik D, Novic M, Zupan J (2002) Chemometrics characterization of the quality of river water. Anal Chim Acta 462:87–100

    Article  Google Scholar 

  • Brüggemann R, Patil GP (2010) Multicriteria prioritization and partial order in environmental sciences. Environ Ecol Stat 17:383–410

    Article  MathSciNet  Google Scholar 

  • Brüggemann R, Patil GP (2011) Ranking and prioritization for multi-indicator systems. Springer, Berlin

    Book  Google Scholar 

  • Brüggemann R, Halfon E, Welzl G, Voigt K, Steinberg CEW (2001) Applying the concept of partially ordered sets on the ranking of near-shore sediments by a battery of tests. J Chem Inf Comput Sci 41:918–925

    Article  Google Scholar 

  • Bulgarian State Standards (1985) EN and ISO, Sofia

    Google Scholar 

  • BulgarianMinistry of Environment and Water (1997) State directive 7 (Surface water quality norms), Sofia

    Google Scholar 

  • Cun C, Vilagines R (1997) Time series analyses on chlorides, nitrates, ammonium and dissolved oxygen concentration in the Seine river near Paris. Sci Total Environ 208:59–569

    Article  Google Scholar 

  • Einax J, Zwanziger H, Geiss S (1997) Chemometrics in environmental analysis. Wiley, Weinheim

    Book  Google Scholar 

  • Einax JW, Aulinger A, Tümplng WV, Prange A (1999) Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models. Fresenius J Anal Chem 363:655–661

    Article  Google Scholar 

  • EPA Memorandum (1988) The COD of pharmaceutical wastewaters

    Google Scholar 

  • European Commission (2003) Technical guidance document in risk assessment. Part II. Joint Research Center, Ispra

    Google Scholar 

  • Felipe-Sotelo M, Andrade JM, Carlosena A, Tauler R (2007) Temporal characterization of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods. Anal Chim Acta 583:128–137

    Article  Google Scholar 

  • Giraudel J, Lek S (2001) A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol Model 146:329–339

    Article  Google Scholar 

  • Goetz R, Steiner B, Friesel P, Klaus R, Walkow F, Maass V, Reincke H, Stachel B (1998) Dioxin (PCDD/F) in the river Elbe—investigations of their origin by multivariate statistical methods. Chemosphere 37:1987–2002

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kowalkowski T, Zbytniewski R, Szpenja J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40:744–752

    Article  Google Scholar 

  • Kudłak B, Wolska L, Namiesnik J (2011) Determination of EC 50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to “direct- contact” and microbiotests. Environ Monit Assess 174:509–516

    Article  Google Scholar 

  • Lu R, Lo S (2002) Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res 40:2265–2274

    Article  Google Scholar 

  • Manganaro A, Ballabio D, Consonni V, Mauri A, Pavan M, Todeschini R (2008) The DART (decision analysis by ranking techniques) software. In: Pavan M, Todeschini R (eds) Scientific data ranking methods: theory and applications. Elsevier, Amsterdam, pp 193–207. Software is freely available on http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/doc/DART2_05Setup.zip. 10 Dec 2012

  • Mangiameli P, Chen S, West D (1996) A comparison of SOM neural network and hierarchical clustering methods. Eur J Oper Res 93:402–417

    Article  MATH  Google Scholar 

  • Marengo E, Gennaro M, Giacosa D, Abrigo C, Saini G, Avignone M (1995) How chemometrics can helpfully assist in evaluating environmental data from lagoon water. Anal Chim Acta 317:53–63

    Article  Google Scholar 

  • Marin-Guirao L, Lloret J, Marin A, Garcia G, Garcia Fernandez AJ (2007) Pulse-discharges of mining wastes into a coastal lagoon: water chemistry and toxicity. Chem Ecol 23:217–231

    Article  Google Scholar 

  • Mattikalli N (1996) Time series analysis of historical surface water quality data of the River Glen Catchment, UK. J Environ Manage 46:149–172

    Article  Google Scholar 

  • Mauri A, Ballabio D (2008) Similarity/diversity measure for sequential data based on Hasse matrices: theory and applications. In: Pavan M, Todeschini R (eds) Scientific data ranking methods: theory and applications. Elsevier, Amsterdam, pp 111–138

    Chapter  Google Scholar 

  • Mendiguchia C, Moreno C, Galindo-Riano D, Garcia-Vargas M (2004) Using chemometric tools to assess anthropogenic effects in river water. A case study: Guadalquivir (Spain). Anal Chim Acta 515:143–149

    Article  Google Scholar 

  • Mingoti S, Lima J (2006) Comparing SOM neural network with fuzzy c-means, K-means and traditional hierarchical clustering algorithms. Eur J Oper Res 174:1742–1759

    Article  MATH  Google Scholar 

  • Moore J, Ramamoorthy S (1984) Heavy metals in natural waters. Applied monitoring and impact assessment. Springer, New York, NY

    Book  Google Scholar 

  • Pardo R, Helena BA, Cazurro C, Guerra C, Deban L, Guerra CM, Vega M (2004) Application of two- and three-way principal component analysis to the interpretation of chemical fractionation results obtained by the use of the B.C.R. procedure. Anal Chim Acta 523:125–132

    Article  Google Scholar 

  • Simeonov V, Einax J, Stanimirova I, Kraft J (2002) Environmetric modelling and interpretation of river water monitoring data. Anal Bioanal Chem 374:898–905

    Article  Google Scholar 

  • Simeonova P, Simeonov V, Andreev G (2003) Water quality study of the Struma River basin, Bulgaria. Cent Eur J Chem 2:121–136

    Article  Google Scholar 

  • Singh KP, Malik A, Basant N, Singh VK, Basant A (2007) Multi-way data modeling of heavy metal fractionation in sediments from Gomti River (India). Chemom Intell Lab Syst 87:185–193

    Article  Google Scholar 

  • Stefanov S, Simeonov V, Tsakovski S (1999) Chemometrical analysis of waste water monitoring data from Yantra river basin, Bulgaria. Toxicol Environ Chem 70:473–482

    Article  Google Scholar 

  • Tsakovski S, Simeonov V (2008) Hasse diagrams as exploratory tool in environmental data mining: a case study. In: Owsinski J, Brüggemann R (eds) Multicriteria ordering and ranking: partial orders, ambiguities and applied issues. SRI, PAS, Warsaw

    Google Scholar 

  • Tsakovski S, Simeonov V, Stefanov S (1999) Time-series analysis of long-term water quality records from Yantra river basin, Bulgaria. Fresenius Environ Bull 8:28–36

    Google Scholar 

  • Tsakovski S, Kudłak B, Simeonov V, Wolska L, Garcia G, Dassenakis M, Namiesnik J (2009) N-way modelling of sediment monitoring data from Mar Menor lagoon, Spain. Talanta 80:935–941

    Article  Google Scholar 

  • Tsakovski S, Kudlak B, Simeonov V, Wolska L, Garcia G, Namiesnik J (2012) Relationship between heavy metal distribution in sediment samples and their ecotoxicity by the use of the Hasse diagram technique. Anal Chim Acta 719:16–23

    Article  Google Scholar 

  • U.S. EPA (Environmental Protection Agency) (2005) Predicting toxicity to amphipods from sediment chemistry. National Center for Environmental Assessment, Washington, DC, EPA/600/R-04/030. Available from National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea

  • Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3:111–126

    Article  MATH  Google Scholar 

  • Voigt K, Brüggemann R, Scherb H, Shen HQ, Schramm KW (2010) Evaluating the relationship between chemical exposure and cryptorchidism. Environ Model Softw 25:1801–1812

    Article  Google Scholar 

  • Wunderlin D, Diaz M, Ame M, Pesce S, Hued A (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Siquia River Basin (Cordoba—Argentina). Water Res 35:2881–2894

    Article  Google Scholar 

  • Yan X, Chen D, Chen Y, Hu S (2001) SOM integrated with CCA for the feature map and classification of complex chemical patterns. Comput Chem 25:597–605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Tsakovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsakovski, S., Simeonov, V. (2014). Hasse Diagram Technique Contributions to Environmental Risk Assessment. In: Brüggemann, R., Carlsen, L., Wittmann, J. (eds) Multi-indicator Systems and Modelling in Partial Order. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8223-9_14

Download citation

Publish with us

Policies and ethics