Skip to main content
Log in

Bifunctional mesoporous hybrid sol-gel prepared silicas for CO2 adsorption

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bifunctionalized mesoporous silica materials were prepared by sol–gel method applying newly proposed sequence of addition of the used silanols in the systems tetraethylortosilicate (TEOS): Tris[3-(trimethoxysilyl)propyl] isocyanurate (ISC): bis[(3- trimethoxysilyl)propyl]amine (BTPA), TEOS: ISC: (3-mercaptopropyl)trimethoxysilane (MPTMS) (TEOS: ISC: MPTMS) and TEOS: BTPA: MPTMS. The bi-functionalized hybrid silicas were synthesized by co-condensation reaction between TEOS and silsesquioxane precursors in acidic media. Soft template approach for pore formation was applied with structural directing agent Pluronic P123. Mesitylene and KCl were used for improving the materials' texture. New sequences of addition of the silanol precursors into the reaction mixture were applied in order to achieve better distribution of the functional groups on the materials surface and for prevention of entrapment of the functional groups in the pore walls. The synthesized bi-functional hybrid mesoporous silicas were investigated by FTIR, N2-physisorption, DTA/TG-MS, SEM, XPS and XRD techniques. CO2 adsorption properties of the synthesized bi-functionalized hybrids were investigated. I was found that the sequence of addition of silanol precursors, the type of the silsesquioxane precursors and the presence of isocyanurate groups have significant influence on the materials texture, morphology and CO2 sorption properties. The presence of isocyanurate groups in the hybrid silica framework significantly improves the textural characteristics and CO2 sorption capacities. The determined heats of adsorption evidenced CO2 physisorption on the active sites of the hybrid materials.

Original scheme for preparation of bifunctional mesoporous silica in the system TEOS: BTPA: ISC.

Highlights

  • Bifunctionalized silicas are prepared by TEOS, ISC, BTPA and/or MPTMS in presence of Pluronic P123.

  • Sequence of silanol addition influences texture, morphology and distribution of surface functional groups.

  • Materials with pore size in the range 3.8–4.4 nm and lack of long-range pore order were prepared.

  • Heats of adsorption evidence CO2 physisorption on the active sites of the hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Energy Transitions. Move over, coal: Gas now emits more CO2 in U.S. Benjamin Storrow, E & E News reporter (2019) https://www.eenews.net/stories/1061760587. Accessed 20 Jan 2021

  2. World Energy Outlook 2019, https://www.iea.org/reports/world-energy-outlook-2019 Accessed 20 Aug 2020

  3. Wang L, Yao M, Hu X, Hu G, Lu J, Luo M, Fan M (2015) Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Appl Surf Sci 324:286–292. https://doi.org/10.1016/j.apsusc.2014.10.135

    Article  CAS  Google Scholar 

  4. Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84:2204–2210. https://doi.org/10.1016/j.fuel.2005.04.003

    Article  CAS  Google Scholar 

  5. Ko D, Siriwardane R, Biegler LT (2003) Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Ind Eng Chem Res 42:339–348. https://doi.org/10.1021/ie0204540

    Article  CAS  Google Scholar 

  6. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Micropor Mesopor Mater 62:29–45. https://doi.org/10.1016/S1387-1811(03)00388-3

    Article  CAS  Google Scholar 

  7. Hu Z, Wang Y, Shah BB, Zhao D (2019) CO2 capture in metal–organic framework adsorbents: an engineering perspective. Adv Sustain Syst 3:1800080. https://doi.org/10.1002/adsu.201800080

    Article  CAS  Google Scholar 

  8. Chen C, Kim J, Ahn WS (2014) CO2 capture by amine-functionalized nanoporous materials: a review. Korean J Chem Eng 31:1919–1934. https://doi.org/10.1007/s11814-014-0257-2

    Article  CAS  Google Scholar 

  9. Qi G, Fu L, Giannelis EP (2014) Sponges with covalently tethered amines for high-efficiency carbon capture. Nat Commun 5:5796. https://doi.org/10.1038/ncomms6796

    Article  CAS  Google Scholar 

  10. Datta SJ, Khumnoon C, Lee ZH, Moon WK, Docao S, Nguyen TH, Hwang IC, Moon D, Oleynikov P, Terasaki O, Yoon KB (2015) CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science 350:302–306. https://doi.org/10.1126/science.aab1680

    Article  CAS  Google Scholar 

  11. Harlick PJE, Sayari A (2007) Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind Eng Chem Res 46:446–458. https://doi.org/10.1021/ie060774+

    Article  CAS  Google Scholar 

  12. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854. https://doi.org/10.1002/cssc.200900036

    Article  CAS  Google Scholar 

  13. Hoffmann F, Froba M (2011) Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem Soc Rev 40:608–620. https://doi.org/10.1039/C0CS00076K

    Article  CAS  Google Scholar 

  14. Gatti G, Costenaro D, Vittoni C, Paul G, Crocella V, Mangano E, Brandani S, Bordiga S, Cossi M, Marchesea L, Bisio C (2017) CO2 adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. Phys Chem Chem Phys 19:14114–14128. https://doi.org/10.1039/C6CP08048K

    Article  CAS  Google Scholar 

  15. Wei Y, Li X, Zhang R, Liu Y, Wang W, Ling Y, El-Toni AM, Zhao D (2016) Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption. Sci Rep 6:20769. https://doi.org/10.1038/srep20769

    Article  CAS  Google Scholar 

  16. Olkhovyk O, Joroniec M (2005) Periodic mesoporous organosilica with large heterocyclic bridging groups. J Am Chem Soc 127:60–61. https://doi.org/10.1021/ja043941a

    Article  CAS  Google Scholar 

  17. Olkhovyk O, Pikus S, Jaroniec M (2005) Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands. J Mater Chem 15:1517–1519. https://doi.org/10.1039/B500058K

    Article  CAS  Google Scholar 

  18. Zhang WH, Zhang X, Zhang L, Schroeder F, Harish P, Hermes S, Shib J, Fischer RA (2007) Synthesis of periodic mesoporous organosilicas with chemically active bridging groups and high loadings of thiol groups. J Mater Chem 17:4320–4326. https://doi.org/10.1039/B708424B

    Article  CAS  Google Scholar 

  19. Grudzien RM, Grabicka BE, Pikus S, Jaroniec M (2006) Periodic mesoporous organosilicas with ethane and large isocyanurate bridging groups. Chem Mater 18:1722–1725. https://doi.org/10.1021/cm052717x

    Article  CAS  Google Scholar 

  20. Van der Voort P, Vercaemst C, Schaubroeck D, Verpoort F (2008) Ordered mesoporous materials at the beginning of the third millennium: new strategies to create hybrid and non-siliceous variantshys. Phys Chem Chem Phys 10:347–360. https://doi.org/10.1039/B707388G

    Article  Google Scholar 

  21. Fryxell GA (2006) The synthesis of functional mesoporous materials. Inorg Chem Commun 9:1141–1150. https://doi.org/10.1016/j.inoche.2006.06.012

    Article  CAS  Google Scholar 

  22. Gunathilake C, Dassanayake RS, Kalpage CS, Jaroniec M (2018) Development of alumina–mesoporous organosilica hybrid materials for carbon dioxide adsorption at 25oC. Materials 11(11):2301. https://doi.org/10.3390/ma11112301

    Article  CAS  Google Scholar 

  23. Schmidt-Winkel P, Lukens JWW, Zhao DY, Yang PD, Chmelka BF, Stucky GD (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121:254–255

    Article  CAS  Google Scholar 

  24. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  25. Yasmin T, Müller K (2011) Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography. J Chromatogr A 1218:6464–6475. https://doi.org/10.1016/j.chroma.2011.07.035

    Article  CAS  Google Scholar 

  26. Wei Q, Liu L, Nie ZR, Chen HQ, Wang YL, Li QY, Zou JX (2007) Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method. Micropor Mesopor Mater 101:381–387. https://doi.org/10.1016/j.micromeso.2006.09.014

    Article  CAS  Google Scholar 

  27. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87 (9–10) https://doi.org/10.1515/pac-2014-1117

  28. Che R, Gu D, Shi L, Zhao D (2011) Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. J Mater Chem 21:17371. https://doi.org/10.1039/c1jm12813b

    Article  CAS  Google Scholar 

  29. Bui TX, Kang SY, Lee SH, Choi H (2011) Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J Hazard Mater 193:156–163. https://doi.org/10.1016/j.jhazmat.2011.07.043

    Article  CAS  Google Scholar 

  30. Zhou G, Simerly T, Golovko L, Tychinin I, Trachevsky V, Gomza Y, Vasiliev A (2012) Highly functionalized bridged silsesquioxanes. J Sol-Gel Sci Technol 62:470–482. https://doi.org/10.1007/s10971-012-2751-5

    Article  CAS  Google Scholar 

  31. Handke M, Handke B, Kowalewska A, Jastrzebski W (2009) New polysilsesquioxane materials of ladder-like structure. J Mol Struct 924–926:254–263. https://doi.org/10.1016/j.molstruc.2008.11.039

    Article  CAS  Google Scholar 

  32. Wei Q, Liu L, Nie ZR, Chen HQ, Wang YL, Li QY, Zou JX (2007) Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method. Micropor Mesopor Mater 101:381–387. https://doi.org/10.1016/j.micromeso.2006.09.014

    Article  CAS  Google Scholar 

  33. Bui TX, Kang SY, Lee SH, Choi H (2011). Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2011.07.043

  34. Wahab MA, Kim I, Ha CS (2004) Bridged amine-functionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl) ethane and bis[(3-trimethoxysilyl)propyl]amine. J Solid State Chem 177:3439–3447. https://doi.org/10.1016/j.jssc.2004.05.062

    Article  CAS  Google Scholar 

  35. Park M, Park SS, Selvaraj M, Zhao D, Ha CS (2009) Hydrophobic mesoporous materials for immobilization of enzymes. Micropor Mesopor Mater 124:76–83. https://doi.org/10.1016/j.micromeso.2009.04.032

    Article  CAS  Google Scholar 

  36. Teng Z, Su X, Lee B, Huang C, Liu Y, Wang S, Wu J, Xu P, Sun J, Shen D, Li W, Lu G (2014) Yolk−Shell structured mesoporous nanoparticles with thioether bridged organosilica frameworks. Chem Mater 26:5980–5987. https://doi.org/10.1021/cm502777e

    Article  CAS  Google Scholar 

  37. Wang X, Lin KSK, Chan JCC, Cheng S (2005) Direct synthesis and catalytic applications of ordered large pore aminopropylfunctionalized SBA-15 mesoporous materials. J Phys Chem B 109:1763–1769. https://doi.org/10.1021/jp045798d

    Article  CAS  Google Scholar 

  38. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to Read and Interpret FTIR spectroscope of organic material. Indonesian J Sci Technol 4:97–118. https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

  39. Coates J (2006) Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry- infrared spectroscopy. John Wiley & Sons, Ltd https://doi.org/10.1002/9780470027318.a5606

  40. Pantoja M, Martínez MA, Abenojar J, Encinas N, Ballesteros Y (2011) Effect of EtOH/H2O Ratio and pH on Bis-Sulfur silane solutions for electrogalvanized steel joints based on anaerobic adhesives. J Adhes 87:688–708. https://doi.org/10.1080/00218464.2011.596771

    Article  CAS  Google Scholar 

  41. Benny TH, Chauhan M, Zhang L, Wong CK, Singh G, Kim E, Ahn E (2011) Synthesis and characterization of novel hybrids of Tris[3-(trimethoxysilyl)propyl] Isocyanurate (TTPI) capped palladium nanoparticles and single-walled carbon nanotubes. Silicon 3:97–101. https://doi.org/10.1007/s12633-011-9086-7

  42. Kao HM, Shen TY, Wu JD, Lee LP (2008) Control of ordered structure and morphology of cubic mesoporous silica SBA-1 via direct synthesis of thiol-functionalization. Micropor Mesopor Mater 110:461–471. https://doi.org/10.1016/j.micromeso.2007.06.035

    Article  CAS  Google Scholar 

  43. Zhu F, Yang D, Zhang F, Li H (2012) Amine-bridged periodic mesoporous organosilica nanospheres as an active and reusable solid base-catalyst for water-medium and solvent-free organic reactions. J Mol Catal A: Chem 363–364:387–397. https://doi.org/10.1016/j.molcata.2012.07.015

    Article  CAS  Google Scholar 

  44. Pal N, Sim S, Cho EB (2020). Multifunctional periodic mesoporous benzene-silicas for evaluation of CO2 adsorption at standard temperature and pressure, Micropor Mesopor Mater https://doi.org/10.1016/j.micromeso.2019.109816

  45. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796. https://doi.org/10.1016/j.carbon.2006.11.019

    Article  CAS  Google Scholar 

  46. Yan X, Xu T, Chen G, Yang S, Liu H, Xue Q (2004) Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D: Appl Phys 37:907–913. https://doi.org/10.1088/0022-3727/37/6/015

    Article  CAS  Google Scholar 

  47. Liu Z, Wang Y (2016) Characterization of triazinedithiolsilane polymeric nanofilm fabricated by galvanostatic technique on copper surface. Int J Electrochem Sci 11:1434–1455

    CAS  Google Scholar 

  48. Siow KS, Britcher L, Kumar S, Griesser HJ (2018) XPS study of sulfur and phosphorus compounds with different oxidation states. Sains Malaysiana 47(8):1913–1922. https://doi.org/10.17576/jsm-2018-4708-33

    Article  CAS  Google Scholar 

  49. Shimizu K, Phanopoulos C, Loenders R, Abel ML, Watts JF (2010) The characterization of the interfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum: a ToF, SIMS and XPS study. Surf Interface Anal 42:1432–1444. https://doi.org/10.1002/sia.3586

    Article  CAS  Google Scholar 

  50. Yahia L’H, Mireles LK (2017). 4 - X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS). Characterization of Polymeric Biomaterials https://doi.org/10.1016/B978-0-08-100737-2.00004-2

  51. Razzaqa AA, Yaoa Y, Shaha R, Qia P, Miaoc L, Chend M, Zhaoa X, Penga Y, Deng Z (2019) High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater 16:194–202. https://doi.org/10.1016/j.ensm.2018.05.006

    Article  Google Scholar 

  52. Kannan B, Higgins DA, Collinson MM (2012) Aminoalkoxysilane Reactivity in Surface Amine Gradients Prepared by Controlled-Rate Infusion. Langmuir 28:16091–16098. https://doi.org/10.1021/la303580c

    Article  CAS  Google Scholar 

  53. Pal N, Sim S, Cho EB (2020) Multifunctional periodic mesoporous benzene-silicas for evaluation of CO2 adsorption at standard temperature and pressure. Micropor Mesopor Mater 293:109816. https://doi.org/10.1016/j.micromeso.2019.109816

    Article  CAS  Google Scholar 

  54. Velikova N, Spassova I (2019) Amine functionalized mesoporous hybrid materials: influence of KCl and xylene on the textural characteristics and CO2 sorption. J Sol-Gel Sci Technol 91:374–384. https://doi.org/10.1007/s10971-019-04998-1

    Article  CAS  Google Scholar 

  55. Kumar A, Hua C, Madden DG, O’Nolan D, Chen KJ, Keane LAJ, Perry JJ, Zaworotko MJ (2017) Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chem Commun 53:5946–5949. https://doi.org/10.1039/C7CC02289A

    Article  CAS  Google Scholar 

  56. Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116. https://doi.org/10.1039/C2TA00388K

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by KAKENHI (18F18768), Grant-in-Aid for JSPS Fellows. Research equipment of distributed research infrastructure INFRAMAT (part of Bulgarian National roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science under contract D01-155/28.08.2018 and project “Center of Excellence: National center of mechatronics and clean technologies” - BG05M2OP001-1.001-0008 were used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Velikova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikova, N., Spassova, I. Bifunctional mesoporous hybrid sol-gel prepared silicas for CO2 adsorption. J Sol-Gel Sci Technol 100, 326–340 (2021). https://doi.org/10.1007/s10971-021-05641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05641-8

Keywords

Navigation