Skip to main content
Log in

Potential risks from the accumulation of heavy metals in canola plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Concentrations of heavy metals in agricultural land near highways are a major concern for humans. This study was conducted to investigate the contamination level of heavy metals in soil, canola crop, and the potential health risk for honeybee and human. The average concentrations (mg/kg) of Co (15.94), Cr (169.66), Ni (55.39), Mn (765.34) Hg (2.99), and Cu (51.31) were elevated beyond their background reference values in world soil average, while Pb (9.45) was below to their respective background levels. This was confirmed by contamination factor (CF) and ecological risk factors (Er). Heavy metal concentrations in different parts of canola decreased in the following order: Fe> Mn > Cr > Pb > Co > Cu > Ni > Hg. Honey transfer factor (TFH) of heavy metals was less than unity except Ni and Hg. Human health (non-carcinogenic) risk assessment of heavy metals in the soil through potential exposure pathway (ingestion) recorded a dramatically increased risk for children (hazard index, HI=2.44). Hazard quotient via honey (HQH) consumption value of heavy metals were within the safe limits (HQ< 1). Probably, honeybees have a strong ability to transfer Co, Pb, Hg, and Mn (HQ> 1) from the canola to their hives during collecting pollen and nectar. HQ in honeybee workers from the consumption of honey can be used to derive HQ in humans using the hazard factor (HF). HF is 1481.482 (Pb), 2356.902 (Ni), and 3888.889 (Cr), respectively, for adult human (70kg) and 317.460 (Pb), 504.377(Ni), and 832.22 (Cr) for children (15kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CF:

Contamination factor

EF:

Enrichment factor

BF:

Bioaccumulation factor

TF:

Translocation factor

TFH :

Translocation factor for honey

TFP :

Translocation factor for pollen

HQ:

Hazard quotient

HQH :

Honey hazard quotient

HQP:

Pollen hazard quotient

HI:

Hazard index

ADD:

Average daily metal intake

EDI:

Estimated daily intake

ADI:

Accepted daily intake

HF:

Health factor

RI:

Potential ecological risk

PLI:

Pollution load index

RfD:

Oral daily intake reference dose

EDF:

Estimated daily factor

RDF:

Estimated reference daily factor

References

  • Abd-Elrahman SH (2015) Heavy metals in soils with special reference to Egyptian soils and their characteristics. ResearchGate

  • Adimalla N, Chen J, Qian H (2020) Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India. Ecotoxicol Environ Saf 194:110406

    Article  CAS  Google Scholar 

  • Aghamirlou HM, Khadem M, Rahmani A, Sadeghian M, Mahvi AH, Akbarzadeh A, Nazmara S (2015) Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J Environ Health Sci Eng 13(1):39

    Article  CAS  Google Scholar 

  • Aldgini HM, Al-Abbadi AA, Abu-Nameh ES, Alghazeer RO (2019) Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi Journal of Biological Sciences 26:1418–1422. https://doi.org/10.1016/j.sjbs.2019.03.005

    Article  CAS  Google Scholar 

  • Altunatamaz S, Tarhan D, Aksu F, Barutcu B, OR M (2017) Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Sci Technol. Print version ISSN 0101-2061

  • Angelova VR, Ivanova RI, Todorov JM, Ivanov KI (2017) Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. J Environ Prot Ecol 18(2):468–478

    CAS  Google Scholar 

  • Antoniadis V, Golia EE, Shahee SM, Rinklebe J (2017) Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ Geochem Health 39(2):319–330

    Article  CAS  Google Scholar 

  • Barker RJ, Lehner Y (1974) Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honeybees (Apis mellifera L.). J Exp Zool 187:277–285

    Article  CAS  Google Scholar 

  • Barman S, Sahu RK, Bhargava SK, Chatterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in fields irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  CAS  Google Scholar 

  • Bartha S, Taut I, Goji G, Vlad IA, Dinulică F (2020) Heavy metal content in polyfloralhoney and potential health risk. A Case Study of Copșa Mică, Romania. Int J Environ Res Public Health 17(5):1507

    Article  CAS  Google Scholar 

  • Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol 47:693–794

    Article  CAS  Google Scholar 

  • Belouali H, Bouaka M, Hakkou A (2008) Determination of some major and minor elements in the east of Morocco honeys through inductively coupled plasma optical emission spectrometry. Apiacta 43:17–24

    Google Scholar 

  • Bilandžić N, Dokić M, Sedak M, Kolanović BS, Varenina I, Končurat A, Rudan N (2011) Determination of trace elements in Croatian floral honey originating from different regions. Food Chem 128:1160–1164

    Article  CAS  Google Scholar 

  • Bogdanov S (2012) Pollen: Nutrition, functional properties, health. Magnesium (Mg) 20(300):35

    Google Scholar 

  • Bowen-Walker PL, Gunn A (2001) The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol Exp Appl 101:207–217

    Article  CAS  Google Scholar 

  • Branquinho C, Serrano HC, Pinto MJ, Martins-Loucao MA (2007) Revisiting the plant hyper accumulation criteria to rare plants and earth abundant elements. Environ Pollut 146:437–443

    Article  CAS  Google Scholar 

  • Chen M, Ma LQ (1998) Comparison of four EPA digestion methods for metal analysis using certified and Florida soils. J Environ Qual 27:1294–1300

    Article  CAS  Google Scholar 

  • Ciobanu O, Rădulescu H (2016) Monitoring of heavy metals residues in honey. Research Journal of Agricultural Science 48(3):9–13

    Google Scholar 

  • Costa A, Veca M, Barberis M, Tosti A, Notaro G, Nava S, Tangorra FM (2019) Heavy metals on honeybees indicate their concentration in the atmosphere. a proof of concept. Ital J Anim Sci 18(1):309–315

    Article  CAS  Google Scholar 

  • Crailsheim LK, Schneider HW, Hrassnigg N, Bühlmann Brosch U, Gmeinbauer RS (1992) Pollen consumption and utilization in worsker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38(6):40–19

    Article  Google Scholar 

  • De Bernardi A, Casucci C, Businelli D, D’Amato, Beone GM, Fontanella MC, Vischetti C (2020) Phytoremediation potential of crop plants in countering nickel contamination in carbonation lime coming from the sugar industry. Plants 9(5):580

    Article  CAS  Google Scholar 

  • Delil AD, Köleli N, Dağhan H, Bahçeci G (2020) Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environ Technol Innov 17:100559

    Article  Google Scholar 

  • Devillers J, Pham-Delègue MH (eds) (2002) Honeybees: estimating the environmental impact of chemicals. CRC Press

  • El-Bady MS (2014) Spatial distribution of some important heavy metals in the soils south of Manzala Lake in Bahr El-Baqar Region, Egypt. Nova Journal of Engineering and Applied Sciences 3(2):1–12

    Google Scholar 

  • Elnazer AA, Salman SA, Seleem EM, Abu El Ella AM (2015) Int J Ecol. Article ID 689420

  • El-Sayad EA (1993) Studies on some micronutrients in some soils of El-Fayoum Governorate. M Sc Thesis Fac Agric Cairo Univ Egypt

  • El-Shazly MM, Abdel-Hamid EA, Moussa AA, Metwally MA (1991) Iron and manganese status in some torrerts and fluvents, of Egypt. Egypt J Soil Sci 31:115–130

    CAS  Google Scholar 

  • Environmental Health and Safety Manual (2000) Safe handling of mercury and mercury compounds. Retrieved October 12: 2017, from https://iaomt.org/TestFoundation/safehandling.htm

  • EOS (1993) Egyptian Standard for requirement of fresh meat. No. 63. Ed. by Egyptian Organization for Standardization. Min of Ind., Cairo.

  • FAO/WHO (1984) Contaminants. In Codex Alimentarius, vol XVII, 1st edn 1. FAO/WHO, Codex Alimentarius Commision, Rome.

  • Ferreira-Baptista L, Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 38:4501–4512

    Article  CAS  Google Scholar 

  • Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22(1):99–106

    CAS  Google Scholar 

  • Galal TM, Hanaa SS (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

    Article  CAS  Google Scholar 

  • Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83(6 Suppl):1526S–1535S

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Giglio A, Ammendola A, Battistella S, Naccarato A, Pallavicini A, Simeon E, Giulianini PG (2017) Apis mellifera ligustica, Spinola 1806 as bioindicator for detecting environmental contamination: a preliminary study of heavy metal pollution in Trieste, Italy. Environ Sci Pollut Res 24(1):659–665

    Article  CAS  Google Scholar 

  • Golob T, Doberšek U, Kump, Nečemer M (2005) Determination of trace and minor elements in Slovenian honey by total reflection X-ray fluorescence spectroscopy. Food Chem 91:593–600

    Article  CAS  Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Harmanescu M, Popovici D, Gergen I (2007) Mineral micronutrients composition of Bee’s. J Agroaliment Process Technol:175–182

  • Hassan Z, Anwar Z, Khattak KU, Islam M, Khan RU, Khattak JK (2012) Civic pollution and its effect on water quality of river Toi at district Kohat. NWFP Res J Environ Earth Sci 4(3):334–339

    Google Scholar 

  • Haydak MH (1970) Honeybee nutrition. Annu Rev Entomol 15:143–156

    Article  Google Scholar 

  • Hayward A (2012) Introduction-oilseed brassicas. In: Edwards D, Batley J, Parkin I, Kole C (eds) Genetics, Genomics and Breeding of Oilseed Brassicas. CRC Press, Boca Rato FL, US, pp 1–13

    Google Scholar 

  • He MJ, Shen H, Li ZT, Wang L, Wang F, Zhao KL, Liu XM, Wendroth O, Xu JM (2019) Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environ Pollut 244:431–443

    Article  CAS  Google Scholar 

  • Hepburn HR, Hugo JJ, Mitchel D, Nijland MM, Scrimgeour AG (1984) On the energetic costs of wax production by the African honeybee, Apis mellifera adansonii. S Afr J Sci 80:363–368

    Google Scholar 

  • Hrassnigg N, Crailsheim K (2005) Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36(2):255–277

    Article  Google Scholar 

  • Islam MS, Ahmed MK, Al-Mamun MH (2015) Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environ Monit Assess 187:288–303

    Article  CAS  Google Scholar 

  • Istamielke GH (2011) OilWorld: Annual Global Analysis of All Major Oilseeds. Oils and oilmeals: supply demand and price outlook. Volume 1 Hamburg ISTA Mielke GmbH 2011

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2017) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    Article  CAS  Google Scholar 

  • Jolly YN, Islam A, Akbar S (2013) Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2(1):385

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press Boca Rato

  • Keshavarzi A, Kumar V (2019) Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geology, Ecology, and Landscapes 4:87–103. https://doi.org/10.1080/24749508.2019.1587588

    Article  Google Scholar 

  • Khan S, Farooq R, Shahbaz S, Aziz M, Sadique M (2009) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Kolawole TO, Olatunji AS, Jimoh MT, Fajemila OT (2018) Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in southwestern Nigeria. J Health Pollution 8(19):180906

    Article  Google Scholar 

  • Kumar V, Sharma A, Minakshi Bhardwaj R, Thukral AK (2018) Temporal distribution, source apportionment, and pollution assessment of metals in the sediments of Beas river. India Hum Ecol Risk Assess 24(8):1–20

    Google Scholar 

  • Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM (2018) Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci Total Environ 618:347–356

    Article  CAS  Google Scholar 

  • Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399

    Article  CAS  Google Scholar 

  • Malhat F, Kasiotis K, Hassanin A, Shokr S (2019) An MIP-AES study of heavy metals in Egyptian honey: toxicity assessment and potential health hazards to consumers. J Elem 24:473–488

    Google Scholar 

  • Malizia D, Giuliano A, Ortaggi G, Masotti A (2012) Common plants as alternative analytical tools to monitor heavy metals in soil. Chem Cent J 6(Suppl 2): (56):3–1

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanussativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Miano T, Voca H, Piscitelli L, Malerba A, Mondelli D, D'Orazio V (2020) The phytoextraction potential of selected vegetable plants on Kosovo contaminated soils. EGU General Assembly 2020

  • Miles DL (1999) Geological applications of plasma spectrometry. Inductively Coupled Plasma Spectrometry and Its Applications, Sheffield Academic Press, Boca Raton, 273-335

  • Mohamed A (1990) Nutrients status in some soils as related to Mineralogical Composition. M. Sc. Thesis, Fac. of Agric., Ain Shams Univ Egypt

  • Mourato M, Moreira I, Leitгo I, Pinto F, Sales J, Martins L (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16(8):17975–17998

    Article  CAS  Google Scholar 

  • Munawar MS, Raja S, Siddique M, Niaz S, Amjad M (2009) Th pollination by honeybee (Apis mellifera L.) increases yield of canola (Brassica napus L.). Pak. Entomol 31:103–106

    Google Scholar 

  • Nedić N, Mačukanović-Jocić M, Rančić D, Rørslett BS, Šoštarić I, Stevanović ZD, Mladenović M (2013) Melliferous potential of Brassica napus L. subsp. Napus (Cruciferae). Arthropod Plant Interact 7:323–333

    Article  Google Scholar 

  • Ogunkunle ATJ, Bello OS, Ojofeitimi OS (2014) Determination of heavy metal contamination of street-vended fruits and vegetables in Lagos state, Nigeria. Int Food Res J 21(5):1725–1730

    CAS  Google Scholar 

  • Olajumoke ET, Ojo FP (2020) Quantifying vehicular heavy metal deposits on roadside soil and vegetation along Akure-Ilesa express road, South-Western Nigeria. GSC Biological and Pharmaceutical Sciences 12(1):054–061

    Article  CAS  Google Scholar 

  • Omran NS, Omar MM, Hussein MH, Abd-Allah MM (2019) Heavy metals concentrations in bee products collected from contaminated and non-contaminated areas from Upper Egypt Governorates. Journal of Advances in Agriculture 10:2349–0837

    Google Scholar 

  • Orisakwe OE, Ozoani HA, Nwaogazie IL, Ezejiofor AN (2019) Probabilistic health risk assessment of heavy metals in honey, Manihot esculenta, and Vernonia amygdalina consumed in Enugu State, Nigeria. Environ Monit Assess 191:424

    Article  CAS  Google Scholar 

  • Oroian M, Prisacaru A, Hretcanu EC, Stroe S, Leahu A, Buculei A (2016) Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int J Food Prop 19(7):1825–1836

    Article  CAS  Google Scholar 

  • Park J, Kim JY, Kim KW (2012) Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosyst Eng 15:9–17

    Article  Google Scholar 

  • Paula EM, da Silva LG, Brandao VLN, Dai X, Faciola AP (2019) Feeding canola, camelina, and carinata meals to ruminants. Animals 9(10):704

    Article  Google Scholar 

  • Perkin Elmer Instruments Manual (2002) Analytical methods for atomic absorption spectrometry, p 96

  • Porrini C, Ghini S, Girotti S, Sabatini AG, Gattavecchia E, Celli G (2002) Use of honeybees as bio-indicators of environmental pollution in Italy. In: Devillers J, Pham-Delègue MH (eds) Honeybees: estimating the environmental impact of chemicals. Taylor & Francis, New York, pp 187–247

    Google Scholar 

  • Przybylski R, Mag T, Eskin NM, McDonald BE (2005) Canola Oil. Ch.2. In: Shahidi F (ed) Bailey’s industrial oil and fat products. Sixth edition, Vol. 2. Edible oil and fat products: edible oils. Wiley, pp 61–148

  • Radojevic M, Bashkin VN (2006) Practical environmental analysis. In: Royal society of chemistry, 2nd edn. UK Publishing, Cambridge, pp 147–170

    Google Scholar 

  • Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746. https://doi.org/10.1016/j.jhazmat.2010.01.147

    Article  CAS  Google Scholar 

  • Rinklebe J, Antoniadis V, Shaheen S M, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88

  • Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stark HJ, Mothes S (2010) Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ Pollut 158:308–318

    Article  CAS  Google Scholar 

  • Rortais A, Arnold G, Halm MP, Touffet-Briens F (2005) Modes of honeybee’s exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36:71–83

    Article  CAS  Google Scholar 

  • Rosa AS, Blochtein B, Lima DK (2011) Honeybee contribution to canola pollination in Southern Brazil. Sci Agric (Piracicaba, Braz) 68:255–259

    Article  Google Scholar 

  • Salman SA, Zeid SA, Seleem EM, Abdel-Hafiz MA (2019) Soil characterization and heavy metal pollution assessment in Orabi farms, El Obour, Egypt. Bulletin of the National Research Centre 43(1):42

    Article  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Satoh M, Aboulroos S (2017) Irrigated agriculture in Egypt: past, present and future. Springer, p 117

  • Schneider P, Drescher W (1987) The influence of Varroa jacobsoni Oud. on weight, development of weight and hypopharyngeal glands, and longevity of Apis mellifera L. Apidologie 18:101–110

    Article  Google Scholar 

  • Shah A, Niaz A, Ullah N, Rehman A, Akhlaq M, Zakir M, Khan MS (2013) Comparative study of heavy metals in soil and selected medicinal plants. J Chem:1–5

  • Shaheen SM, Shams MS, Khalifa MR, El-Daly MA, Rinklebe J (2017) Various soil amendments and wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol Environ Saf 142:375–387

    Article  CAS  Google Scholar 

  • Shaheen SM, Ali RA, Abowaly ME, Rabie AA, Edrees N, Rinklebe J (2018) Assessing the potential mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques. J Geochem Explor 191:28–42

    Article  CAS  Google Scholar 

  • Sharaan AN, Ghallab KH, Yousif KM (2002) Performance and water relations of some rapeseed genotypes grown in sandy loam soils under irrigation regimes. Annals of Agric Sc Moshtohor 40(2):751–767

    Google Scholar 

  • Shetaya WH, Marzouk ER, Mohamed EF, Elkassas M, Bailey EH, Young SD (2018) Lead in Egyptian soils: origin, reactivity and bioavailability measured by stable isotope dilution. Sci Total Environ 618:460–468

    Article  CAS  Google Scholar 

  • Shokr MS, El Baroudy AA, Fullen MA, El-Beshbeshy TR, Ramadan AR, Abd El Halim A, Jorge MC (2016) Spatial distribution of heavy metals in the middle Nile delta of Egypt. International Soil and Water Conservation Research 4(4):293–303

    Article  Google Scholar 

  • Silici S, Uluozlu OD, Tuzen M, Soylak M (2008) Assessment of trace element levels in Rhododendron honeys of Black Sea Region. Turkey J Hazard Mater 156:612–618

    Article  CAS  Google Scholar 

  • Singh UK, Kumar B (2017) Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174:183–199

    Article  CAS  Google Scholar 

  • Sobhanardakani S, Kianpour M (2016) Heavy metal levels and potential health risk assessment in honey consumed in the west of Iran. Avicenna Journal of Environmental Health Engineering 3(2):e7795

    Article  CAS  Google Scholar 

  • SR EN ISO 6869 (2002) Animal feeding stuffs. Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc—method using atomic absorption spectrometry (ISO 6869:2000)

  • Steffan-Dewenter I (2003) Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie 34:227–235

    Article  Google Scholar 

  • Suryawanshi PV, Rajaram BS, Bhanarkar AD, Rao CC (2016) Determining heavy metal contamination of road dust in Delhi, India. Atmósfera 29(3):221–234

    CAS  Google Scholar 

  • Szwalec A, Mundała P, Kędzior R, Pawlik J (2020) Monitoring and assessment of cadmium, lead, zinc, and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ Monit Assess 192(3):155

    Article  CAS  Google Scholar 

  • Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coal-mining city in Eastern China. Ecotoxicol Environ Saf 138:83–91

    Article  CAS  Google Scholar 

  • Taranov GF (1959) The production of wax in the honeybee colony. Bee World 40:113–121

    Article  Google Scholar 

  • Tian K, Huang B, Xing Z, Hu W (2017) Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol Indic 72:510–520

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Wiss Meeresunters 33:566–572

    Article  Google Scholar 

  • Troeh FR, Thompson LM (2005) Soil and soil fertility, 6th edn. Wiley, New Delhi

    Google Scholar 

  • Tuzen M, Silici S, Mendil D, Soylak M (2007) Trace element levels in honeys from different regions of Turkey. Food Chem 103:325–330

    Article  CAS  Google Scholar 

  • U.S.E.P.A, IRIS (US Environmental Protection Agency’s Integrated Risk Information System) (2011) http://www.epa.gov/iris/. Accessed 01/15/2011.

  • US Environmental Protection Agency (1997) Method 3051a: microwave assisted acid dissolution of sediments, sludges, soils, and oils, 2nd edn. US Gov Print Office Washington, DC

  • US EPA (2000) Risk-based concentration table, Environmental Protection Agency, , Philadelphia, PA; Washington DC

  • US EPA (2001) Risk assessment guidance for superfund. In: Part A, Process for Conducting Probabilistic Risk Assessment. vol. III. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, pp. 20460. Available at. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-volume-iii-part, Accessed date: 22 Sept 2018

  • van der Steen JM, de Kraker J, Grotenhuis T (2012) Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environ Monit Assess 184:4119–4126

    Article  CAS  Google Scholar 

  • Wang YH, Xu DM, Hung CH, Cheng SR, Yu JY, Lee MS, Yu PP, Chang-Chien PP (2011) Investigation of PCDD/Fs, dioxin-like PCBs and metal element in honey from Taiwan and Mainland China. Adv Mater Res 356:908–913

    Article  CAS  Google Scholar 

  • Wang L, Yang D, Li ZT, Fu YH, Liu XM, Brookes PC, Xu JM (2019) A comprehensive mitigation strategy for heavy metal contamination of farmland around mining areas—screening of low accumulated cultivars, soil remediation and risk assessment. Environ Pollut 245:820–828

    Article  CAS  Google Scholar 

  • WHO (1996) Permissible limits of heavy metals in soil and plants (Geneva: World Health Organization), Switzerland

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Yu R, Ji J, Yuan X, Song Y, Wang C (2012) Accumulation and translocation of heavy metals in the canola (Brassica napus L.)—soil system in Yangtze River Delta, China. Plant Soil 353(1-2):33–45

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

  • Zohny Ensegam AM (2002) Cobalt in alluvial Egyptian soils as affected by industrial activities. J Environ Sci 14:34–38

    CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the all stuff in Central Laboratory for soil, food and feedstuffs ISO-17025, Faculty of Development and Technology, Zagazig University, Zagazig, Egypt, In particular Professor Mustafa Abdel-Rahim director of the Central Laboratory, for their collaboration in this research.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is single and there are no individual contributions of authors to the manuscript.

Corresponding author

Correspondence to Ahmed Ali Romeh.

Ethics declarations

Ethics approval and consent to participate

“Not applicable.”

Consent for publication

“Not applicable.”

Competing interests

The author declares no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeh, A.A. Potential risks from the accumulation of heavy metals in canola plants. Environ Sci Pollut Res 28, 52529–52546 (2021). https://doi.org/10.1007/s11356-021-14330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14330-6

Keywords

Navigation