skip to main content
research-article

Security in Brain-Computer Interfaces: State-of-the-Art, Opportunities, and Future Challenges

Authors Info & Claims
Published:02 January 2021Publication History
Skip Abstract Section

Abstract

Brain-Computer Interfaces (BCIs) have significantly improved the patients’ quality of life by restoring damaged hearing, sight, and movement capabilities. After evolving their application scenarios, the current trend of BCI is to enable new innovative brain-to-brain and brain-to-the-Internet communication paradigms. This technological advancement generates opportunities for attackers, since users’ personal information and physical integrity could be under tremendous risk. This work presents the existing versions of the BCI life-cycle and homogenizes them in a new approach that overcomes current limitations. After that, we offer a qualitative characterization of the security attacks affecting each phase of the BCI cycle to analyze their impacts and countermeasures documented in the literature. Finally, we reflect on lessons learned, highlighting research trends and future challenges concerning security on BCIs.

References

  1. Minkyu Ahn, Mijin Lee, Jinyoung Choi, Sung Jun, Minkyu Ahn, Mijin Lee, Jinyoung Choi, and Sung Chan Jun. 2014. A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors 14, 8 (Aug. 2014), 14601--14633.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zainudeen Mohd Shaid. 2018. Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions. Comput. Secur. 74 (May 2018), 144--166.Google ScholarGoogle Scholar
  3. Naseer Amara, Huang Zhiqui, and Awais Ali. 2017. Cloud computing security threats and attacks with their mitigation techniques. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC’17). IEEE, 244--251.Google ScholarGoogle ScholarCross RefCross Ref
  4. Pedram Amini, Muhammad Amin Araghizadeh, and Reza Azmi. 2015. A survey on Botnet: Classification, detection and defense. In Proceedings of the International Electronics Symposium (IES’15). IEEE, 233--238.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Anu and S. Vimala. 2017. A survey on sniffing attacks on computer networks. In Proceedings of the International Conference on Intelligent Computing and Control (I2C2’17). IEEE, 5.Google ScholarGoogle Scholar
  6. P. Arico, G. Borghini, G. Di Flumeri, N. Sciaraffa, and F. Babiloni. 2018. Passive BCI beyond the lab: Current trends and future directions. Physiol. Measure. 39, 8 (Aug. 2018), 08TR02.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Attiah, M. Chatterjee, and C. C. Zou. 2018. A game theoretic approach to model cyber attack and defense strategies. In Proceedings of the IEEE International Conference on Communications (ICC’18). IEEE, 1--7.Google ScholarGoogle Scholar
  8. Pablo Ballarin Usieto and Javier Minguez. 2018. Avoiding brain hacking—Challenges of cybersecurity and privacy in Brain Computer Interfaces. Retrieved from https://www.bitbrain.com/blog/cybersecurity-brain-computer-interface.Google ScholarGoogle Scholar
  9. Srijita Basu, Arjun Bardhan, Koyal Gupta, Payel Saha, Mahasweta Pal, Manjima Bose, Kaushik Basu, Saunak Chaudhury, and Pritika Sarkar. 2018. Cloud computing security challenges 8 solutions-A survey. In Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC’18). IEEE, 347--356.Google ScholarGoogle ScholarCross RefCross Ref
  10. Nebia Bentabet and Nasr Eddine Berrached. 2016. Synchronous P300-based BCI to control home appliances. In Proceedings of the 8th International Conference on Modelling, Identification and Control (ICMIC’16). IEEE, 835--838.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. López Bernal, A. Huertas Celdrán, L. Fernández Maimó, M. T. Barros, S. Balasubramaniam, and G. Martínez Pérez. 2020. Cyberattacks on miniature brain implants to disrupt spontaneous neural signaling. IEEE Access 8 (2020), 152204--152222.Google ScholarGoogle ScholarCross RefCross Ref
  12. Abraham Bernstein, Mark Klein, and Thomas W. Malone. 2012. Programming the global brain. Commun. ACM 55, 5 (May 2012), 41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Meriem Bettayeb, Qassim Nasir, and Manar Abu Talib. 2019. Firmware update attacks and security for IoT devices. In Proceedings of the ArabWIC 6th Annual International Conference Research Track. ACM Press, 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Marom Bikson, Andre R. Brunoni, Leigh E. Charvet, Vincent P. Clark, Leonardo G. Cohen, Zhi-De Deng, Jacek Dmochowski, Dylan J. Edwards, Flavio Frohlich, Emily S. Kappenman, Kelvin O. Lim, Colleen Loo, Antonio Mantovani, David P. McMullen, Lucas C. Parra, Michele Pearson, Jessica D. Richardson, Judith M. Rumsey, Pejman Sehatpour, David Sommers, Gozde Unal, Eric M. Wassermann, Adam J. Woods, and Sarah H. Lisanby. 2018. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul. 11, 3 (2018), 465--480.Google ScholarGoogle ScholarCross RefCross Ref
  15. Gajanan K. Birajdar and Vijay H. Mankar. 2013. Digital image forgery detection using passive techniques: A survey. Dig. Investigat. 10, 3 (Oct. 2013), 226--245.Google ScholarGoogle Scholar
  16. Paul E. Black and Irena Bojanova. 2016. Defeating buffer overflow: A trivial but dangerous bug. IT Profess. 18, 6 (Nov 2016), 58--61.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Tamara Bonaci, Ryan Calo, and Howard Jay Chizeck. 2015. App stores for the brain: Privacy and security in brain-computer interfaces. IEEE Technol. Soc. Mag. 34, 2 (June 2015), 32--39.Google ScholarGoogle ScholarCross RefCross Ref
  18. Tamara Bonaci, Jeffrey Herron, Charles Matlack, and Howard Jay Chizeck. 2015. Securing the exocortex: A 21st-century cybernetics challenge. IEEE Technol. Soc. Mag. 34, 3 (Sep. 2015), 44--51. arxiv:hep-ph/0011146Google ScholarGoogle ScholarCross RefCross Ref
  19. Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. 2016. Integration of cloud computing and Internet of Things: A survey. Future Gen. Comput. Syst. 56 (Mar. 2016), 684--700.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Brain/MINDS project. 2019. Brain/MINDS project. Retrieved from https://brainminds.jp/en/.Google ScholarGoogle Scholar
  21. Brain/Neural Computer Interaction project. 2015. Brain/Neural Computer Interaction project. Retrieved from http://bnci-horizon-2020.eu/.Google ScholarGoogle Scholar
  22. Clemens Brunner, Niels Birbaumer, Benjamin Blankertz, Christoph Guger, Andrea Kübler, Donatella Mattia, José del R. Millán, Felip Miralles, Anton Nijholt, Eloy Opisso, Nick Ramsey, Patric Salomon, and Gernot R. Müller-Putz. 2015. BNCI Horizon 2020: Towards a roadmap for the BCI community. Brain-Comput. Interfaces 2, 1 (Jan. 2015), 10.Google ScholarGoogle ScholarCross RefCross Ref
  23. Carsten Buhmann, Torge Huckhagel, Katja Engel, Alessandro Gulberti, Ute Hidding, Monika Poetter-Nerger, Ines Goerendt, Peter Ludewig, Hanna Braass, Chi-un Choe, Kara Krajewski, Christian Oehlwein, Katrin Mittmann, Andreas K. Engel, Christian Gerloff, Manfred Westphal, Johannes A. Köppen, Christian K. E. Moll, and Wolfgang Hamel. 2017. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS ONE 12, 7 (July 2017), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  24. Carmen Camara, Pedro Peris-Lopez, and Juan E. Tapiador. 2015. Security and privacy issues in implantable medical devices: A comprehensive survey. J. Biomed. Info. 55 (June 2015), 272--289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Debashis Das Chakladar and Sanjay Chakraborty. 2018. Feature extraction and classification in brain-computer interfacing: Future research issues and challenges. In Natural Computing for Unsupervised Learning. Springer, Cham, Chapter 5, 101--131.Google ScholarGoogle Scholar
  26. Howard Jay Chizeck and Tamara Bonaci. 2014. Brain-Computer Interface Anonymizer. U.S. Patent Application. US20140228701A1.Google ScholarGoogle Scholar
  27. Cybersecurity 8 Infrastructure Security Agancy (CISA). 2020. ICS Medical Advisory (ICSMA-19-080-01). Retrieved from https://us-cert.cisa.gov/ics/advisories/ICSMA-19-080-01.Google ScholarGoogle Scholar
  28. Christopher G. Coogan and Bin He. 2018. Brain-computer interface control in a virtual reality environment and applications for the Internet of Things. IEEE Access 6 (2018), 10840--10849.Google ScholarGoogle ScholarCross RefCross Ref
  29. Wilson G. de Oliveira Júnior, Juliana M. de Oliveira, Roberto Munoz, and Victor Hugo C. de Albuquerque. 2020. A proposal for Internet of Smart Home Things based on BCI system to aid patients with amyotrophic lateral sclerosis. Neural Comput. Appl. 32, 15 (Aug. 2020), 11007--11017.Google ScholarGoogle ScholarCross RefCross Ref
  30. Till A. Dembek, Paul Reker, Veerle Visser-Vandewalle, Jochen Wirths, Harald Treuer, Martin Klehr, Jan Roediger, Haidar S. Dafsari, Michael T. Barbe, and Lars Timmermann. 2017. Directional DBS increases side-effect thresholds—A prospective, double-blind trial. Move. Disord. 32, 10 (2017), 1380--1388.Google ScholarGoogle ScholarCross RefCross Ref
  31. Tamara Denning, Yoky Matsuoka, and Tadayoshi Kohno. 2009. Neurosecurity: Security and privacy for neural devices. Neurosurg. Focus 27, 1 (2009), E7.Google ScholarGoogle ScholarCross RefCross Ref
  32. Miguel P. Eckstein, Koel Das, Binh T. Pham, Matthew F. Peterson, Craig K. Abbey, Jocelyn L. Sy, and Barry Giesbrecht. 2012. Neural decoding of collective wisdom with multi-brain computing. NeuroImage 59, 1 (Jan. 2012), 94--108.Google ScholarGoogle ScholarCross RefCross Ref
  33. Christine A. Edwards, Abbas Kouzani, Kendall H. Lee, and Erika K. Ross. 2017. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin. Proceed. 92, 9 (2017), 1427--1444.Google ScholarGoogle ScholarCross RefCross Ref
  34. Emotiv. 2019. Emotiv. Retrieved from https://www.emotiv.com/.Google ScholarGoogle Scholar
  35. Emotiv. 2019. Emotiv Cortex API. Retrieved from https://emotiv.github.io/cortex-docs/#introduction.Google ScholarGoogle Scholar
  36. Emotiv. 2019. EMOTIV EPOC+. Retrieved from https://www.emotiv.com/epoc/.Google ScholarGoogle Scholar
  37. Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Ángel Perales Gómez, Félix García Clemente, James Weimer, and Insup Lee. 2019. Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments. Sensors 19, 5 (Mar. 2019), 1114.Google ScholarGoogle Scholar
  38. Samuel G. Finlayson, John D. Bowers, Joichi Ito, Jonathan L. Zittrain, Andrew L. Beam, and Isaac S. Kohane. 2019. Adversarial attacks on medical machine learning. Science 363, 6433 (Mar. 2019), 1287--1289.Google ScholarGoogle ScholarCross RefCross Ref
  39. Heylighen Francis. 2007. The global superorganism: An evolutionary-cybernetic model of the emerging network society. Soc. Evol. Hist. 6, 1 (2007), 58--119.Google ScholarGoogle Scholar
  40. Mario Frank, Tiffany Hwu, Sakshi Jain, Robert T. Knight, Ivan Martinovic, Prateek Mittal, Daniele Perito, Ivo Sluganovic, and Dawn Song. 2017. Using EEG-based BCI devices to subliminally probe for private information. In Proceedings of the on Workshop on Privacy in the Electronic Society (WPES’17). ACM Press, New York, New York, 133--136. Retrieved from https://arxiv:1312.6052.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jianwen Fu, Jingfeng Xue, Yong Wang, Zhenyan Liu, and Chun Shan. 2018. Malware visualization for fine-grained classification. IEEE Access 6 (2018), 14510--14523.Google ScholarGoogle ScholarCross RefCross Ref
  42. Ariko Fukushima, Reiko Yagi, Norie Kawai, Manabu Honda, Emi Nishina, and Tsutomu Oohashi. 2014. Frequencies of inaudible high-frequency sounds differentially affect brain activity: Positive and negative hypersonic effects. PLoS ONE 9, 4 (Apr. 2014), e95464.Google ScholarGoogle ScholarCross RefCross Ref
  43. Joyce Gomes-Osman, Aprinda Indahlastari, Peter J. Fried, Danylo L. F. Cabral, Jordyn Rice, Nicole R. Nissim, Serkan Aksu, Molly E. McLaren, and Adam J. Woods. 2018. Non-invasive brain stimulation: Probing intracortical circuits and improving cognition in the aging brain. Front. Aging Neurosci. 10 (2018), 177.Google ScholarGoogle ScholarCross RefCross Ref
  44. Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. 2018. Making machine learning robust against adversarial inputs. Commun. ACM 61, 7 (July 2018), 56--66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Carles Grau, Romuald Ginhoux, Alejandro Riera, Thanh Lam Nguyen, Hubert Chauvat, Michel Berg, Julià L. Amengual, Alvaro Pascual-Leone, and Giulio Ruffini. 2014. Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS ONE 9, 8 (Aug 2014), e105225.Google ScholarGoogle Scholar
  46. Kanika Grover, Alvin Lim, and Qing Yang. 2014. Jamming and anti-jamming techniques in wireless networks: A survey. Int. J. Ad Hoc and Ubiquitous Computing 17, 4 (2014), 197.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. 2017. A literature survey on social engineering attacks: Phishing attack. In Proceedings of the IEEE International Conference on Computing, Communication and Automation (ICCCA’16). IEEE, 537--540.Google ScholarGoogle Scholar
  48. Christian J. Hartmann, Sabine Fliegen, Stefan J. Groiss, Lars Wojtecki, and Alfons Schnitzler. 2019. An update on best practice of deep brain stimulation in Parkinson’s disease. Therap. Adv. Neurol. Disord. 12 (Jan. 2019), 1756286419838096.Google ScholarGoogle Scholar
  49. Joseph M. Hatfield. 2018. Social engineering in cybersecurity: The evolution of a concept. Comput. Secur. 73 (2018), 102--113.Google ScholarGoogle ScholarCross RefCross Ref
  50. Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch, and Tilo Müller. 2018. Honey, I shrunk your app security: The state of android app hardening. In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer International Publishing, Cham, 69--91.Google ScholarGoogle Scholar
  51. Shenghong He, Tianyou Yu, Zhenghui Gu, and Yuanqing Li. 2017. A hybrid BCI web browser based on EEG and EOG signals. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’17). IEEE, 1006--1009.Google ScholarGoogle ScholarCross RefCross Ref
  52. Franz Hell, Carla Palleis, Jan H. Mehrkens, Thomas Koeglsperger, and Kai Bötzel. 2019. Deep brain stimulation programming 2.0: Future perspectives for target identification and adaptive closed loop stimulation. Front. Neurol. 10 (2019), 314.Google ScholarGoogle ScholarCross RefCross Ref
  53. HL7 International. 2019. Health Level Seven. Retrieved from https://www.hl7.org/.Google ScholarGoogle Scholar
  54. Keum Shik Hong and Muhammad Jawad Khan. 2017. Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: A review. Front. Neurorobot. 11 (July 2017), 35.Google ScholarGoogle ScholarCross RefCross Ref
  55. Mohammad-Parsa Hosseini, Dario Pompili, Kost Elisevich, and Hamid Soltanian-Zadeh. 2017. Optimized deep learning for EEG big data and seizure prediction BCI via Internet of Things. IEEE Trans. Big Data 3, 4 (Dec. 2017), 392–404.Google ScholarGoogle ScholarCross RefCross Ref
  56. Alberto Huertas Celdrán, Ginés Dólera Tormo, Félix Gómez Mármol, Manuel Gil Pérez, and Gregorio Martínez Pérez. 2016. Resolving privacy-preserving relationships over outsourced encrypted data storages. Int. J. Info. Secur. 15, 2 (Apr. 2016), 195--209.Google ScholarGoogle Scholar
  57. Luca Iandoli, Mark Klein, and Giuseppe Zollo. 2009. Enabling on-line deliberation and collective decision-making through large-scale argumentation. Int. J. Decis. Supp. Syst. Technol. 1, 1 (Jan. 2009), 69--92.Google ScholarGoogle ScholarCross RefCross Ref
  58. Marcello Ienca. 2015. Neuroprivacy, neurosecurity and brain-hacking: Emerging issues in neural engineering. Bioethica Forum 8, 2 (2015), 51--53.Google ScholarGoogle Scholar
  59. Marcello Ienca and Pim Haselager. 2016. Hacking the brain: Brain–computer interfacing technology and the ethics of neurosecurity. Ethics Info. Technol. 18, 2 (June 2016), 117--129.Google ScholarGoogle Scholar
  60. Marcello Ienca, Pim Haselager, and Ezekiel J. Emanuel. 2018. Brain leaks and consumer neurotechnology. Nature Biotechnol. 36, 9 (2018), 805--810.Google ScholarGoogle ScholarCross RefCross Ref
  61. IETF. 2011. IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap. Retrieved from https://tools.ietf.org/html/rfc6071.Google ScholarGoogle Scholar
  62. IETF. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. Retrieved from https://tools.ietf.org/html/rfc8446.Google ScholarGoogle Scholar
  63. Judy Illes, Samuel Weiss, Jaideep Bains, Jennifer A. Chandler, Patricia Conrod, Yves De Koninck, Lesley K. Fellows, Deanna Groetzinger, Eric Racine, Julie M. Robillard, and Marla B. Sokolowski. 2019. A neuroethics backbone for the evolving canadian brain research strategy.Neuron 101, 3 (Feb. 2019), 370--374.Google ScholarGoogle Scholar
  64. The BRAIN Initiative. 2019. The BRAIN Initiative. Retrieved from https://braininitiative.nih.gov/.Google ScholarGoogle Scholar
  65. ISO. 2018. ISO/IEC 27001 Information security management. Retrieved from https://www.iso.org/isoiec-27001-information-security.html.Google ScholarGoogle Scholar
  66. Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 19--35.Google ScholarGoogle ScholarCross RefCross Ref
  67. Linxing Jiang, Andrea Stocco, Darby M. Losey, Justin A. Abernethy, Chantel S. Prat, and Rajesh P. N. Rao. 2019. BrainNet: A multi-person brain-to-brain interface for direct collaboration between brains. Sci. Rep. 9, 1 (Dec. 2019), 6115.Google ScholarGoogle Scholar
  68. Sergio José and Rodríguez Méndez. 2018. Modeling actuations in BCI-O. In Proceedings of the 8th International Conference on the Internet of Things (IOT’18). ACM Press, New York, 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Christoph Kapeller, Rupert Ortner, Gunther Krausz, Markus Bruckner, Brendan Z. Allison, Christoph Guger, and Günter Edlinger. 2014. Toward multi-brain communication: Collaborative spelling with a P300 BCI. In Proceedings of the International Conference on Augmented Cognition. Springer, Cham, 47--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Ahmed A. Karim, Thilo Hinterberger, Jürgen Richter, Jürgen Mellinger, Nicola Neumann, Herta Flor, Andrea Kübler, and Niels Birbaumer. 2006. Neural Internet: Web surfing with brain potentials for the completely paralyzed. Neurorehab. Neural Repair 20, 4 (Dec. 2006), 508--515.Google ScholarGoogle ScholarCross RefCross Ref
  71. Jozsef Katona, Tibor Ujbanyi, Gergely Sziladi, and Attila Kovari. 2019. Electroencephalogram-based Brain-Computer Interface for Internet of Robotic Things. Springer International Publishing, Cham, Chapter 12, 253--275.Google ScholarGoogle Scholar
  72. Elena Khabarova, Natalia Denisova, Aleksandr Dmitriev, Konstantin Slavin, and Leo Verhagen Metman. 2018. Deep brain stimulation of the subthalamic nucleus in patients with parkinson disease with prior pallidotomy or thalamotomy. Brain Sci. 8, 4 (Apr. 2018), 66.Google ScholarGoogle ScholarCross RefCross Ref
  73. G. Kirubavathi and R. Anitha. 2018. Structural analysis and detection of android botnets using machine learning techniques. Int. J. Info. Secur. 17, 2 (Apr. 2018), 153--167.Google ScholarGoogle Scholar
  74. Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. 2017. DDoS in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80--84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jan Kubanek. 2018. Neuromodulation with transcranial focused ultrasound.Neurosurg. Focus 44, 2 (Feb. 2018), E14.Google ScholarGoogle Scholar
  76. D. Richard Kuhn, Vincent C. Hu, W. Timothy Polk, and Shu-Jen Chang. 2001. Introduction to Public Key Technology and the Federal PKI Infrastructure. Technical Report. National Institute of Standards and Technology, 1--54. Retrieved from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-32.pdf.Google ScholarGoogle Scholar
  77. James Kurose and Keith Ross. 2017. Computer Networking: A Top-Down Approach (7th ed.). Pearson, London, 852 pages.Google ScholarGoogle Scholar
  78. Marios Kyriazis. 2015. Systems neuroscience in focus: From the human brain to the global brain? Front. Syst. Neurosci. 9 (Feb. 2015), 7.Google ScholarGoogle Scholar
  79. Ofir Landau, Rami Puzis, and Nir Nissim. 2020. Mind your mind. Comput. Surveys 53, 1 (2020), 1--38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Francisco Laport, Francisco J. Vazquez-Araujo, Paula M. Castro, Adriana Dapena, Francisco Laport, Francisco J. Vazquez-Araujo, Paula M. Castro, and Adriana Dapena. 2018. Brain-computer interfaces for Internet of Things. Proceedings 2, 18 (Sep. 2018), 1179.Google ScholarGoogle ScholarCross RefCross Ref
  81. Sylvain Le Groux, Jonatas Manzolli, Paul F. Verschure, Marti Sanchez, Andre Luvizotto, Anna Mura, Aleksander Valjamae, Christoph Guger, Robert Prueckl, and Ulysses Bernardet. 2010. Disembodied and collaborative musical interaction in the multimodal brain orchestra. In Proceedings of the International Conference on New Interfaces for Musical Expression. MIME, 309--314.Google ScholarGoogle Scholar
  82. Mikhail A. Lebedev and Miguel A. L. Nicolelis. 2017. Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 2 (Apr. 2017), 767--837.Google ScholarGoogle ScholarCross RefCross Ref
  83. Wonhye Lee, Suji Kim, Byeongnam Kim, Chungki Lee, Yong An Chung, Laehyun Kim, and Seung-Schik Yoo. 2017. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface. PLoS ONE 12, 6 (July 2017), e0178476.Google ScholarGoogle Scholar
  84. M. León Ruiz, M. L. Rodríguez Sarasa, L. Sanjuán Rodríguez, J. Benito-León, E. García-Albea Ristol, and S. Arce Arce. 2018. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease. Neurología (English Edition) 33, 7 (2018), 459--472.Google ScholarGoogle ScholarCross RefCross Ref
  85. Timothée Levi, Paolo Bonifazi, Paolo Massobrio, and Michela Chiappalone. 2018. Editorial: Closed-loop systems for next-generation neuroprostheses. Front. Neurosci. 12 (2018), 26.Google ScholarGoogle ScholarCross RefCross Ref
  86. Guangye Li and Dingguo Zhang. 2016. Brain-computer interface controlled cyborg: Establishing a functional information transfer pathway from human brain to cockroach brain. PLoS ONE 11, 3 (Mar. 2016), e0150667.Google ScholarGoogle Scholar
  87. Qianqian Li, Ding Ding, and Mauro Conti. 2015. Brain-computer interface applications: Security and privacy challenges. In Proceedings of the IEEE Conference on Communications and Network Security (CNS’15). IEEE, 663--666.Google ScholarGoogle Scholar
  88. Lifelines Neuro. 2020. Neurodiagnostics Without Boundaries. Retrieved from https://www.lifelinesneuro.com/.Google ScholarGoogle Scholar
  89. Anli Liu, Mihály Vöröslakos, Greg Kronberg, Simon Henin, Matthew R. Krause, Yu Huang, Alexander Opitz, Ashesh Mehta, Christopher C. Pack, Bart Krekelberg, Antal Berényi, Lucas C. Parra, Lucia Melloni, Orrin Devinsky, and György Buzsáki. 2018. Immediate neurophysiological effects of transcranial electrical stimulation. Nature Commun. 9, 1 (Nov. 2018), 5092.Google ScholarGoogle ScholarCross RefCross Ref
  90. Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor C. M. Leung. 2018. A survey on security threats and defensive techniques of machine learning: A data driven view. IEEE Access 6 (2018), 12103--12117.Google ScholarGoogle ScholarCross RefCross Ref
  91. Huimin Lu, Hyoungseop Kim, Yujie Li, and Yin Zhang. 2018. BrainNets: Human emotion recognition using an Internet of Brian Things platform. In Proceedings of the 14th International Wireless Communications and Mobile Computing Conference (IWCMC’18). IEEE, 1313--1316.Google ScholarGoogle ScholarCross RefCross Ref
  92. Muhammad Mahmoud, Manjinder Nir, and Ashraf Matrawy. 2015. A survey on botnet architectures, detection and defences. Int. J. Netw. Secur. 17, 3 (May 2015), 272--289.Google ScholarGoogle Scholar
  93. Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Fog computing: A taxonomy, survey and future directions. In Internet of Everything. Springer, Singapore, 103--130.Google ScholarGoogle Scholar
  94. Vladimir A. Maksimenko, Alexander E. Hramov, Nikita S. Frolov, Annika Lüttjohann, Vladimir O. Nedaivozov, Vadim V. Grubov, Anastasia E. Runnova, Vladimir V. Makarov, Jürgen Kurths, and Alexander N. Pisarchik. 2018. Increasing human performance by sharing cognitive load using brain-to-brain interface. Front. Neurosci. 12 (Dec. 2018), 949.Google ScholarGoogle Scholar
  95. Eduard Marin, Dave Singelée, Bohan Yang, Vladimir Volski, Guy A. E. Vandenbosch, Bart Nuttin, and Bart Preneel. 2018. Securing wireless neurostimulators. In Proceedings of the 8th ACM Conference on Data and Application Security and Privacy (CODASPY’18). Association for Computing Machinery, New York, NY, 287--298.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Ivan Martinovic, Doug Davies, and Mario Frank. 2012. On the feasibility of side-channel attacks with brain-computer interfaces. In Proceedings of the 21st USENIX Security Symposium. USENIX, Bellevue, WA, 143--158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Nuno R. B. Martins, Amara Angelica, Krishnan Chakravarthy, Yuriy Svidinenko, Frank J. Boehm, Ioan Opris, Mikhail A. Lebedev, Melanie Swan, Steven A. Garan, Jeffrey V. Rosenfeld, Tad Hogg, and Robert A. Freitas. 2019. Human brain/cloud interface. Front. Neurosci. 13 (Mar. 2019), 112.Google ScholarGoogle Scholar
  98. M. Ebrahim M. Mashat, Guangye Li, and Dingguo Zhang. 2017. Human-to-human closed-loop control based on brain-to-brain interface and muscle-to-muscle interface. Sci. Rep. 7, 1 (Dec. 2017), 11001.Google ScholarGoogle Scholar
  99. Hideyuki Matsumoto and Yoshikazu Ugawa. 2017. Adverse events of tDCS and tACS: A review. Clin. Neurophysiol. Pract. 2 (2017), 19--25.Google ScholarGoogle ScholarCross RefCross Ref
  100. M. McMahon and M. Schukat. 2018. A low-cost, open-source, BCI- VR game control development environment prototype for game-based neurorehabilitation. In Proceedings of the IEEE Games, Entertainment, Media Conference (GEM’18). IEEE, 1--9.Google ScholarGoogle Scholar
  101. Medtronic. 2020. DBS Security Reference Guide. Retrieved from http://manuals.medtronic.com/content/dam/emanuals/neuro/NDHF1550-189563.pdf.Google ScholarGoogle Scholar
  102. Medtronic. 2020. DBS Theraphy for OCD. Retrieved from https://www.medtronic.com/us-en/patients/treatments-therapies/deep-brain-stimulation-ocd/about/risks-probable-benefits.html.Google ScholarGoogle Scholar
  103. Medtronic. 2020. Security Bulletins. Retrieved from https://global.medtronic.com/xg-en/product-security/security-bulletins.html.Google ScholarGoogle Scholar
  104. Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis Polychronakis. 2017. Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts. In Proceedings of the IEEE Symposium on Security and Privacy (SP’17). IEEE, 1009--1024.Google ScholarGoogle ScholarCross RefCross Ref
  105. MITRE. 2019. CWE-CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component (“Injection”) (3.2). Retrieved from https://cwe.mitre.org/data/definitions/74.html.Google ScholarGoogle Scholar
  106. MITRE. 2019. CWE-CWE-77: Improper Neutralization of Special Elements used in a Command (“Command Injection”) (3.2). Retrieved from https://cwe.mitre.org/data/definitions/77.html.Google ScholarGoogle Scholar
  107. MITRE. 2019. CWE-CWE-78: Improper Neutralization of Special Elements used in an OS Command (“OS Command Injection”) (3.2). Retrieved from https://cwe.mitre.org/data/definitions/78.html.Google ScholarGoogle Scholar
  108. MITRE. 2019. CWE-CWE-89: Improper Neutralization of Special Elements used in an SQL Command (“SQL Injection”) (3.2). Retrieved from https://cwe.mitre.org/data/definitions/89.html.Google ScholarGoogle Scholar
  109. MITRE. 2019. CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer. Retrieved from https://cwe.mitre.org/data/definitions/119.html.Google ScholarGoogle Scholar
  110. MITRE. 2019. CWE-120: Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”) (3.2). Retrieved from https://cwe.mitre.org/data/definitions/120.html.Google ScholarGoogle Scholar
  111. MITRE. 2019. CWE-121: Stack-based Buffer Overflow (3.2). Retrieved from https://cwe.mitre.org/data/definitions/121.html.Google ScholarGoogle Scholar
  112. MITRE. 2019. CWE-122: Heap-based Buffer Overflow (3.2). Retrieved from https://cwe.mitre.org/data/definitions/122.html.Google ScholarGoogle Scholar
  113. Muhammad Baqer Mollah, Md. Abul Kalam Azad, and Athanasios Vasilakos. 2017. Security and privacy challenges in mobile cloud computing: Survey and way ahead. J. Netw. Comput. Appl. 84 (Apr. 2017), 38--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Ingrid Moreno-Duarte, Nigel Gebodh, Pedro Schestatsky, Berkan Guleyupoglu, Davide Reato, Marom Bikson, and Felipe Fregni. 2014. Chapter 2—Transcranial electrical stimulation: Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), Transcranial Pulsed Current Stimulation (tPCS), and Transcranial Random Noise Stimulation (tRNS). In The Stimulated Brain, Roi Cohen Kadosh (Ed.). Academic Press, San Diego, 35--59.Google ScholarGoogle Scholar
  115. Emily M. Mugler, Carolin A. Ruf, Sebastian Halder, Michael Bensch, and Andrea Kubler. 2010. Design and implementation of a P300-based brain-computer interface for controlling an Internet browser. IEEE Trans. Neural Syst. Rehab. Eng. 18, 6 (Dec. 2010), 599--609.Google ScholarGoogle ScholarCross RefCross Ref
  116. Elon Musk and Neuralink. 2019. An integrated brain-machine interface platform with thousands of channels. bioRxiv (2019). Retrieved from arXiv:https://www.biorxiv.org/content/early/2019/08/02/703801.full.pdf.Google ScholarGoogle Scholar
  117. NeuroPace. 2013. NeuroPace® RNS® System Patient Manual. Retrieved from https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100026c.pdf.Google ScholarGoogle Scholar
  118. NeuroSky. 2019. NeuroSky. Retrieved from http://neurosky.com/.Google ScholarGoogle Scholar
  119. Miguel A. L. Nicolelis. 2001. Actions from thoughts. Nature 409, 6818 (2001), 403--407.Google ScholarGoogle Scholar
  120. NIST. 2018. Cybersecurity Framework. Retrieved from https://www.nist.gov/cyberframework.Google ScholarGoogle Scholar
  121. Abdulmalik Obaid, Mina-Elraheb Hanna, Yu-Wei Wu, Mihaly Kollo, Romeo Racz, Matthew R. Angle, Jan Müller, Nora Brackbill, William Wray, Felix Franke, E. J. Chichilnisky, Andreas Hierlemann, Jun B. Ding, Andreas T. Schaefer, and Nicholas A. Melosh. 2020. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6, 12 (2020). Retrieved from arXiv:https://advances.sciencemag.org/content/6/12/eaay2789.full.pdf.Google ScholarGoogle Scholar
  122. Joseph E. O’Doherty, Mikhail A. Lebedev, Peter J. Ifft, Katie Z. Zhuang, Solaiman Shokur, Hannes Bleuler, and Miguel A. L. Nicolelis. 2011. Active tactile exploration using a brain–machine–brain interface. Nature 479, 7372 (Nov. 2011), 228--231.Google ScholarGoogle Scholar
  123. Open Web Application Security Project. 2017. Top 10-2017 A6-Security Misconfiguration-OWASP. Retrieved from https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration.Google ScholarGoogle Scholar
  124. Open Web Application Security Project. 2017. Top 10-2017 Top 10-OWASP. Retrieved from https://www.owasp.org/index.php/Top_10-2017_Top_10.Google ScholarGoogle Scholar
  125. Open Web Application Security Project. 2018. OWASP Internet of Things Project. Retrieved from https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project.Google ScholarGoogle Scholar
  126. Miguel Pais-Vieira, Gabriela Chiuffa, Mikhail Lebedev, Amol Yadav, and Miguel A. L. Nicolelis. 2015. Building an organic computing device with multiple interconnected brains. Sci. Rep. 5, 1 (Dec. 2015), 11869.Google ScholarGoogle Scholar
  127. Miguel Pais-Vieira, Mikhail Lebedev, Carolina Kunicki, Jing Wang, and Miguel A. L. Nicolelis. 2013. A brain-to-brain interface for real-time sharing of sensorimotor information. Sci. Rep. 3, 1 (Dec. 2013), 1319.Google ScholarGoogle Scholar
  128. Mahboubeh Parastarfeizabadi and Abbas Z. Kouzani. 2017. Advances in closed-loop deep brain stimulation devices. J. NeuroEngineer. Rehab. 14, 1 (Aug. 2017), 79.Google ScholarGoogle Scholar
  129. Rafael Polanía, Michael A. Nitsche, and Christian C. Ruff. 2018. Studying and modifying brain function with non-invasive brain stimulation. Nature Neurosci. 21, 2 (Feb. 2018), 174--187.Google ScholarGoogle ScholarCross RefCross Ref
  130. Riccardo Poli, Caterina Cinel, Ana Matran-Fernandez, Francisco Sepulveda, and Adrian Stoica. 2013. Towards cooperative brain-computer interfaces for space navigation. In Proceedings of the International Conference on Intelligent User Interfaces (IUI’13). ACM Press, New York, 149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Riccardo Poli, Davide Valeriani, and Caterina Cinel. 2014. Collaborative brain-computer interface for aiding decision-making. PLoS ONE 9, 7 (July 2014), 22.Google ScholarGoogle ScholarCross RefCross Ref
  132. Mu-ming Poo, Jiu-lin Du, Nancy Y. Ip, Zhi-Qi Xiong, Bo Xu, and Tieniu Tan. 2016. China brain project: Basic neuroscience, brain diseases, and brain-inspired computing. Neuron 92, 3 (Nov. 2016), 591--596.Google ScholarGoogle Scholar
  133. Human Brain Project. 2019. Human Brain Project. Retrieved from https://www.humanbrainproject.eu/en/.Google ScholarGoogle Scholar
  134. Open Web Application Security Project. 2017. Top 10-2017 A1-Injection-OWASP. Retrieved from https://www.owasp.org/index.php/Top_10-2017_A1-Injection.Google ScholarGoogle Scholar
  135. Laurie Pycroft and Tipu Z. Aziz. 2018. Security of implantable medical devices with wireless connections: The dangers of cyber-attacks. Expert Rev. Med. Devices 15, 6 (July 2018), 403--406.Google ScholarGoogle ScholarCross RefCross Ref
  136. Laurie Pycroft, Sandra G. Boccard, Sarah L.F. Owen, John F. Stein, James J. Fitzgerald, Alexander L. Green, and Tipu Z. Aziz. 2016. Brainjacking: Implant security issues in invasive neuromodulation. World Neurosurg. 92 (Aug. 2016), 454--462.Google ScholarGoogle Scholar
  137. Rabie A. Ramadan and Athanasios V. Vasilakos. 2017. Brain computer interface: Control signals review. Neurocomput. 223 (Feb. 2017), 26--44.Google ScholarGoogle Scholar
  138. Arjun Ramakrishnan, Peter J. Ifft, Miguel Pais-Vieira, Yoon Woo Byun, Katie Z. Zhuang, Mikhail A. Lebedev, and Miguel A.L. Nicolelis. 2015. Computing arm movements with a monkey Brainet. Sci. Rep. 5, 1 (Sep. 2015), 10767.Google ScholarGoogle Scholar
  139. Rajesh P. N. Rao. 2019. Towards neural co-processors for the brain: Combining decoding and encoding in brain–computer interfaces. Curr. Opin. Neurobiol. 55 (Apr. 2019), 142--151.Google ScholarGoogle Scholar
  140. Rajesh P. N. Rao, Andrea Stocco, Matthew Bryan, Devapratim Sarma, Tiffany M. Youngquist, Joseph Wu, and Chantel S. Prat. 2014. A direct brain-to-brain interface in humans. PLoS ONE 9, 11 (Nov. 2014), e111332.Google ScholarGoogle ScholarCross RefCross Ref
  141. Heena Rathore, Chenglong Fu, Amr Mohamed, Abdulla Al-Ali, Xiaojiang Du, Mohsen Guizani, and Zhengtao Yu. 2020. Multi-layer security scheme for implantable medical devices. Neural Comput. Appl. 32, 9 (2020), 4347--4360.Google ScholarGoogle ScholarCross RefCross Ref
  142. Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges. Future Gen. Comput. Syst. 78 (Jan. 2018), 680--698.Google ScholarGoogle Scholar
  143. Ron Ross, Victoria Pillitteri, Richard Graubart, Deborah Bodeau, and Rosalie McQuaid. 2019. Developing Cyber Resilient Systems: A Systems Security Engineering Approach. Technical Report. National Institute of Standards and Technology. Retrieved from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2.pdf.Google ScholarGoogle Scholar
  144. W. Saad, M. Bennis, and M. Chen. 2019. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. (2019), 1–9.Google ScholarGoogle Scholar
  145. Abdul Saboor, Felix Gembler, Mihaly Benda, Piotr Stawicki, Aya Rezeika, Roland Grichnik, and Ivan Volosyak. 2018. A browser-driven SSVEP-based BCI web speller. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC’18). IEEE, Miyazaki, Japan, 625--630.Google ScholarGoogle ScholarCross RefCross Ref
  146. Abdul Saboor, Aya Rezeika, Piotr Stawicki, Felix Gembler, Mihaly Benda, Thomas Grunenberg, and Ivan Volosyak. 2017. SSVEP-based BCI in a smart home scenario. In Proceedings of the International Work-Conference on Artificial Neural Networks. Springer, Cham, 474--485.Google ScholarGoogle ScholarCross RefCross Ref
  147. Takamichi Saito, Ryohei Watanabe, Shuta Kondo, Shota Sugawara, and Masahiro Yokoyama. 2016. A survey of prevention/mitigation against memory corruption attacks. In Proceedings of the 19th International Conference on Network-based Information Systems (NBiS’16). IEEE, 500--505.Google ScholarGoogle ScholarCross RefCross Ref
  148. Parthana Sarma, Prakash Tripathi, Manash Pratim Sarma, and Kandarpa Kumar Sarma. 2016. Pre-processing and feature extraction techniques for EEG-BCI applications—A review of recent research. ADBU-J. Eng. Technol. 5 (2016), 2348--7305.Google ScholarGoogle Scholar
  149. M. A. Scholl, K. M. Stine, J. Hash, P. Bowen, L. A. Johnson, C. D. Smith, and D. I. Steinberg. 2008. An Introductory Resource Guide for Implementing the Health Insurance Portability and Accountability Act (HIPAA) Security Rule. Technical Report. National Institute of Standards and Technology, Gaithersburg, MD. Retrieved from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-66r1.pdf.Google ScholarGoogle Scholar
  150. Suzanne B. Schwartz. 2018. Medical device cybersecurity through the FDA lens. In Proceedings of the 27th USENIX Security Symposium. USENIX Association, Baltimore, MD.Google ScholarGoogle Scholar
  151. Boston Scientific. 2020. Product Security Information. Retrieved from https://www.bostonscientific.com/en-US/customer-service/product-security/product-security-information.html.Google ScholarGoogle Scholar
  152. Diego Sempreboni and Luca Viganò. 2018. Privacy, Security, and Trust in the Internet of Neurons. Retrieved from https://arxiv:cs.CY/1807.06077.Google ScholarGoogle Scholar
  153. Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership inference attacks against machine learning models. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 3--18.Google ScholarGoogle ScholarCross RefCross Ref
  154. S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi. 2019. A Survey on malware analysis and mitigation techniques. Comput. Sci. Rev. 32 (May 2019), 23.Google ScholarGoogle Scholar
  155. Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park. 2016. A survey on cloud computing security: Issues, threats, and solutions. J. Netw. Comput. Appl. 75 (Nov. 2016), 200--222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. José L. Sirvent, José M. Azorín, Eduardo Iáñez, Andrés Úbeda, and Eduardo Fernández. 2010. P300-based brain-computer interface for Internet browsing. In Trends in Practical Applications of Agents and Multiagent Systems. Springer, Berlin, 615--622.Google ScholarGoogle Scholar
  157. International Neuromodulation Society. 2020. International Neuromodulation Society. Retrieved from https://www.neuromodulation.com/.Google ScholarGoogle Scholar
  158. Kandhasamy Sowndhararajan, Minju Kim, Ponnuvel Deepa, Se Park, and Songmun Kim. 2018. Application of the P300 event-related potential in the diagnosis of epilepsy disorder: A review. Scientia Pharmaceutica 86, 2 (Mar. 2018), 10.Google ScholarGoogle ScholarCross RefCross Ref
  159. William Stallings. 2017. Cryptography and Network Security: Principles and Practice (7th ed.). Pearson, London, 766 pages.Google ScholarGoogle Scholar
  160. Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz, and Javier Lopez. 2018. A survey of IoT-enabled cyberattacks: Assessing attack paths to critical infrastructures and services. IEEE Commun. Surveys Tutor. 20, 4 (2018), 3453--3495.Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Andrea Stocco, Chantel S. Prat, Darby M. Losey, Jeneva A. Cronin, Joseph Wu, Justin A. Abernethy, and Rajesh P. N. Rao. 2015. Playing 20 questions with the mind: Collaborative problem solving by humans using a brain-to-brain interface. PLoS ONE 10, 9 (Sep 2015), e0137303.Google ScholarGoogle ScholarCross RefCross Ref
  162. Canadian Brain Research Strategy. 2019. Canadian Brain Research Strategy. Retrieved from https://canadianbrain.ca/.Google ScholarGoogle Scholar
  163. Kaushik Sundararajan. 2017. Privacy and Security Issues in Brain Computer Interface. Master’s thesis. Auckland University of Technology.Google ScholarGoogle Scholar
  164. Hassan Takabi. 2016. Firewall for brain: Towards a privacy preserving ecosystem for BCI applications. In Proceedings of the IEEE Conference on Communications and Network Security (CNS’16). IEEE, 370--371.Google ScholarGoogle ScholarCross RefCross Ref
  165. Hassan Takabi, Anuj Bhalotiya, and Manar Alohaly. 2016. Brain computer interface (BCI) applications: Privacy threats and countermeasures. In Proceedings of the IEEE 2nd International Conference on Collaboration and Internet Computing. IEEE, 102--111.Google ScholarGoogle ScholarCross RefCross Ref
  166. Andrew S. Tanenbaum and David J. Wetherall. 2011. Computer Networks (5th ed.). Pearson, London.Google ScholarGoogle Scholar
  167. William J. Tyler, Joseph L. Sanguinetti, Maria Fini, and Nicholas Hool. 2017. Non-invasive neural stimulation. In Micro- and Nanotechnology Sensors, Systems, and Applications IX, Thomas George, Achyut K. Dutta, and M. Saif Islam (Eds.), Vol. 10194. International Society for Optics and Photonics, Anaheim, CA, 280--290.Google ScholarGoogle Scholar
  168. U.S. Food and Drug Administration. 2016. Postmarket Management of Cybersecurity in Medical Devices. Technical Report. U.S. Food and Drug Administration, Rockville, MD.Google ScholarGoogle Scholar
  169. U.S. Food and Drug Administration. 2018. Content of Premarket Submissions for Management of Cybersecurity in Medical Devices. Technical Report. U.S. Food and Drug Administration, Rockville, MD.Google ScholarGoogle Scholar
  170. Satish Vadlamani, Burak Eksioglu, Hugh Medal, and Apurba Nandi. 2016. Jamming attacks on wireless networks: A taxonomic survey. Int. J. Prod. Econ. 172 (Feb. 2016), 76--94.Google ScholarGoogle ScholarCross RefCross Ref
  171. Swati Vaid, Preeti Singh, and Chamandeep Kaur. 2015. EEG signal analysis for BCI interface: A review. In Proceedings of the International Conference on Advanced Computing and Communication Technologies (ACCT’15). IEEE, 143--147.Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Marcel van Gerven, Jason Farquhar, Rebecca Schaefer, Rutger Vlek, Jeroen Geuze, Anton Nijholt, Nick Ramsey, Pim Haselager, Louis Vuurpijl, Stan Gielen, and Peter Desain. 2009. The brain–computer interface cycle. J. Neural Eng. 6, 4 (Aug. 2009), 041001.Google ScholarGoogle Scholar
  173. Sebastian Vasile, David Oswald, and Tom Chothia. 2019. Breaking all the things—A systematic survey of firmware extraction techniques for IoT devices. In Smart Card Research and Advanced Applications. Springer, Cham, 171--185.Google ScholarGoogle Scholar
  174. T. M. Vaughan, D. J. Mcfarland, G. Schalk, W. A. Sarnacki, D. J. Krusienski, E. W. Sellers, and J. R. Wolpaw. 2006. The wadsworth BCI research and development program: At home with BCI. IEEE Trans. Neural Syst. Rehab. Eng. 14, 2 (June 2006), 229--233.Google ScholarGoogle ScholarCross RefCross Ref
  175. Ainuddin Wahid Abdul Wahab, Mustapha Aminu Bagiwa, Mohd Yamani Idna Idris, Suleman Khan, Zaidi Razak, and Muhammad Rezal Kamel Ariffin. 2014. Passive video forgery detection techniques: A survey. In Proceedings of the 10th International Conference on Information Assurance and Security. IEEE, 29--34.Google ScholarGoogle Scholar
  176. Yijun Wang and Tzyy-Ping Jung. 2011. A collaborative brain-computer interface for improving human performance. PLoS ONE 6, 5 (May 2011), e20422.Google ScholarGoogle Scholar
  177. Ping Yan and Zheng Yan. 2018. A survey on dynamic mobile malware detection. Softw. Qual. J. 26, 3 (Sep. 2018), 891--919.Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. T. Yaqoob, H. Abbas, and M. Atiquzzaman. 2019. Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices—A review. IEEE Commun. Surveys Tutor. 21, 4 (2019), 3723--3768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Seung-Schik Yoo, Hyungmin Kim, Emmanuel Filandrianos, Seyed Javid Taghados, and Shinsuk Park. 2013. Non-invasive brain-to-brain interface (BBI): Establishing functional links between two brains. PLoS ONE 8, 4 (Apr. 2013), e60410.Google ScholarGoogle ScholarCross RefCross Ref
  180. Tianyou Yu, Yuanqing Li, Jinyi Long, and Zhenghui Gu. 2012. Surfing the Internet with a BCI mouse. J. Neural Eng. 9, 3 (June 2012), 036012.Google ScholarGoogle ScholarCross RefCross Ref
  181. Peng Yuan, Yijun Wang, Xiaorong Gao, Tzyy-Ping Jung, and Shangkai Gao. 2013. A collaborative brain-computer interface for accelerating human decision making. In Proceedings of the International Conference on Universal Access in Human-Computer Interaction. Springer, Berlin, 672--681.Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Lan Zhang, Ker Jiun Wang, Huan Chen, and Zhi Hong Mao. 2016. Internet of brain: Decoding human intention and coupling EEG signals with Internet services. In Proceedings of the International Conference on Service Science (ICSS’16). IEEE, 172--179.Google ScholarGoogle ScholarCross RefCross Ref
  183. PeiYun Zhang, MengChu Zhou, and Giancarlo Fortino. 2018. Security and trust issues in Fog computing: A survey. Future Gen. Comput. Syst. 88 (Nov. 2018), 16--27.Google ScholarGoogle ScholarCross RefCross Ref
  184. Shaomin Zhang, Sheng Yuan, Lipeng Huang, Xiaoxiang Zheng, Zhaohui Wu, Kedi Xu, and Gang Pan. 2019. Human mind control of rat Cyborg’s continuous locomotion with wireless brain-to-brain interface. Sci. Rep. 9, 1 (Dec 2019), 1321.Google ScholarGoogle Scholar
  185. Xiang Zhang, Lina Yao, Shuai Zhang, Salil Kanhere, Michael Sheng, and Yunhao Liu. 2019. Internet of Things meets brain–computer interface: A unified deep learning framework for enabling human-thing cognitive interactivity. IEEE Internet Things J. 6, 2 (Apr. 2019), 2084--2092.Google ScholarGoogle Scholar
  186. Yulong Zou, Jia Zhu, Xianbin Wang, and Lajos Hanzo. 2016. A survey on wireless security: Technical challenges, recent advances, and future trends. Proc. IEEE 104, 9 (Sep. 2016), 1727--1765.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Security in Brain-Computer Interfaces: State-of-the-Art, Opportunities, and Future Challenges

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 54, Issue 1
      January 2022
      844 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3446641
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 January 2021
      • Accepted: 1 September 2020
      • Revised: 1 August 2020
      • Received: 1 November 2019
      Published in csur Volume 54, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format