Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

MHV graviton scattering amplitudes and current algebra on the celestial sphere

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 February 2021
  • Volume 2021, article number 176, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
MHV graviton scattering amplitudes and current algebra on the celestial sphere
Download PDF
  • Shamik Banerjee1,2,
  • Sudip Ghosh3 &
  • Partha Paul4 

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A preprint version of the article is available at arXiv.

Abstract

The Cachazo-Strominger subleading soft graviton theorem for a positive helicity soft graviton is equivalent to the Ward identities for \( \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} \) currents. This naturally gives rise to a \( \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} \) current algebra living on the celestial sphere. The generators of the \( \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} \) current algebra and the supertranslations, coming from a positive helicity leading soft graviton, form a closed algebra. We find that the OPE of two graviton primaries in the Celestial CFT, extracted from MHV amplitudes, is completely determined in terms of this algebra. To be more precise, 1) The subleading terms in the OPE are determined in terms of the leading OPE coefficient if we demand that both sides of the OPE transform in the same way under this local symmetry algebra. 2) Positive helicity gravitons have null states under this local algebra whose decoupling leads to differential equations for MHV amplitudes. An n point MHV amplitude satisfies two systems of (n − 2) linear first order PDEs corresponding to (n − 2) positive helicity gravitons. We have checked, using Hodges’ formula, that one system of differential equations is satisfied by any MHV amplitude, whereas the other system has been checked up to six graviton MHV amplitude. 3) One can determine the leading OPE coefficients from these differential equations.

This points to the existence of an autonomous sector of the Celestial CFT which holographically computes the MHV graviton scattering amplitudes and is completely defined by this local symmetry algebra. The MHV-sector of the Celestial CFT is like a minimal model of 2-D CFT.

Article PDF

Download to read the full article text

Similar content being viewed by others

(Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes

Article Open access 28 September 2022

Massive gravitino scattering amplitudes and the unitarity cutoff of the new Fayet-Iliopoulos terms

Article Open access 11 January 2023

Pure gravities via color-kinematics duality for fundamental matter

Article Open access 06 November 2015

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Aurora
  • Classical and Quantum Gravity
  • Classical Electrodynamics
  • Field Theory and Polynomials
  • String Theory
  • Heliospheric Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].

  2. S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Pate, A.-M. Raclariu, A. Strominger and E. Y. Yuan, Celestial operator products of gluons and gravitons, arXiv:1910.07424 [INSPIRE].

  4. Y. T. A. Law and M. Zlotnikov, Poincaré constraints on celestial amplitudes, JHEP 03 (2020) 085 [Erratum ibid. 04 (2020) 202] [arXiv:1910.04356] [INSPIRE].

  5. S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130 [arXiv:2002.00975] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Fotopoulos, S. Stieberger, T. R. Taylor and B. Zhu, Extended BMS algebra of celestial CFT, JHEP 03 (2020) 130 [arXiv:1912.10973] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].

  10. D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S -matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D stress tensor for 4D gravity, Phys. Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. He, D. Kapec, A.-M. Raclariu and A. Strominger, Loop-corrected Virasoro symmetry of 4D quantum gravity, JHEP 08 (2017) 050 [arXiv:1701.00496] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Ball, E. Himwich, S. A. Narayanan, S. Pasterski and A. Strominger, Uplifting AdS3/CFT2 to flat space holography, JHEP 08 (2019) 168 [arXiv:1905.09809] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. R. K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 (2010) [arXiv:1102.4632] [INSPIRE].

  19. T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. Donnay, S. Pasterski and A. Puhm, Asymptotic symmetries and celestial CFT, JHEP 09 (2020) 176 [arXiv:2005.08990] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Campiglia and J. Peraza, Generalized BMS charge algebra, Phys. Rev. D 101 (2020) 104039 [arXiv:2002.06691] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP 11 (2018) 200 [Erratum ibid. 04 (2020) 172] [arXiv:1810.00377] [INSPIRE].

  25. D. Kapec and P. Mitra, A d-dimensional stress tensor for Minkd+2 gravity, JHEP 05 (2018) 186 [arXiv:1711.04371] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Pasterski, S.-H. Shao and A. Strominger, Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. de Boer and S. N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Banerjee, Null infinity and unitary representation of the Poincaré group, JHEP 01 (2019) 205 [arXiv:1801.10171] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. S. Banerjee, Symmetries of free massless particles and soft theorems, Gen. Rel. Grav. 51 (2019) 128 [arXiv:1804.06646] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Banerjee, S. Ghosh, P. Pandey and A. P. Saha, Modified celestial amplitude in Einstein gravity, JHEP 03 (2020) 125 [arXiv:1909.03075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Pasterski, S.-H. Shao and A. Strominger, Gluon amplitudes as 2d conformal correlators, Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett. B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. C. Cardona and Y.-T. Huang, S-matrix singularities and CFT correlation functions, JHEP 08 (2017) 133 [arXiv:1702.03283] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. H. T. Lam and S.-H. Shao, Conformal basis, optical theorem, and the bulk point singularity, Phys. Rev. D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain, Conformal structure of massless scalar amplitudes beyond tree level, JHEP 04 (2018) 039 [arXiv:1711.06690] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. Stieberger and T. R. Taylor, Strings on celestial sphere, Nucl. Phys. B 935 (2018) 388 [arXiv:1806.05688] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. S. Stieberger and T. R. Taylor, Symmetries of celestial amplitudes, Phys. Lett. B 793 (2019) 141 [arXiv:1812.01080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S. Banerjee, P. Pandey and P. Paul, Conformal properties of soft operators. Part I. Use of null states, Phys. Rev. D 101 (2020) 106014 [arXiv:1902.02309] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Banerjee and P. Pandey, Conformal properties of soft-operators. Part II. Use of null-states, JHEP 02 (2020) 067 [arXiv:1906.01650] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A. Fotopoulos and T. R. Taylor, Primary fields in celestial CFT, JHEP 10 (2019) 167 [arXiv:1906.10149] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. L. Donnay, A. Puhm and A. Strominger, Conformally soft photons and gravitons, JHEP 01 (2019) 184 [arXiv:1810.05219] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. Pate, A.-M. Raclariu and A. Strominger, Conformally soft theorem in gauge theory, Phys. Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. W. Fan, A. Fotopoulos and T. R. Taylor, Soft limits of Yang-Mills amplitudes and conformal correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial amplitudes: conformal partial waves and soft limits, JHEP 10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav. 36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Puhm, Conformally soft theorem in gravity, JHEP 09 (2020) 130 [arXiv:1905.09799] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Guevara, Notes on conformal soft theorems and recursion relations in gravity, arXiv:1906.07810 [INSPIRE].

  50. E. Himwich, S. A. Narayanan, M. Pate, N. Paul and A. Strominger, The soft \( \mathcal{S} \)-matrix in gravity, JHEP 09 (2020) 129 [arXiv:2005.13433] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat holography: aspects of the dual field theory, JHEP 12 (2016) 147 [arXiv:1609.06203] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. A. Hodges, New expressions for gravitational scattering amplitudes, JHEP 07 (2013) 075 [arXiv:1108.2227] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].

  54. P. Paul, unpublished work.

  55. Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. D. Nandan, J. Plefka and W. Wormsbecher, Collinear limits beyond the leading order from the scattering equations, JHEP 02 (2017) 038 [arXiv:1608.04730] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. L. Rodina, Scattering amplitudes from soft theorems and infrared behavior, Phys. Rev. Lett. 122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Banerjee, S. Ghosh, P. Pandey, P. Paul and A. P. Saha, unpublished work.

Download references

Author information

Authors and Affiliations

  1. Institute of Physics, Sachivalaya Marg, Bhubaneshwar, 751005, India

    Shamik Banerjee

  2. Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India

    Shamik Banerjee

  3. Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan

    Sudip Ghosh

  4. Chennai Mathematical Institute, SIPCOT IT Park, Siruseri, Chennai, 603103, India

    Partha Paul

Authors
  1. Shamik Banerjee
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Sudip Ghosh
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Partha Paul
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Shamik Banerjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.04330

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Ghosh, S. & Paul, P. MHV graviton scattering amplitudes and current algebra on the celestial sphere. J. High Energ. Phys. 2021, 176 (2021). https://doi.org/10.1007/JHEP02(2021)176

Download citation

  • Received: 16 November 2020

  • Accepted: 11 January 2021

  • Published: 22 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)176

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge-gravity correspondence
  • Models of Quantum Gravity
  • Scattering Amplitudes
  • Space-Time Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature