Skip to main content

Advertisement

Log in

Systemic Pharmacokinetics of Oxaliplatin After Intraperitoneal Administration by Electrostatic Pressurized Intraperitoneal Aerosol Chemotherapy (ePIPAC) in Patients with Unresectable Colorectal Peritoneal Metastases in the CRC-PIPAC Trial

  • Peritoneal Surface Malignancy
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Electrostatic pressurized intraperitoneal aerosol chemotherapy (ePIPAC) is a palliative treatment for unresectable peritoneal metastases from various primary cancers. However, little is known about the systemic pharmacokinetics of oxaliplatin after ePIPAC.

Methods

Twenty patients with unresectable colorectal peritoneal metastases were treated with repetitive ePIPAC monotherapy with oxaliplatin (92 mg/m2) and a simultaneous intravenous bolus of leucovorin (20 mg/m2) and 5-fluorouracil (400 mg/m2). Samples were collected during each ePIPAC: whole blood at t = 0, t = 5, t = 10, t = 20, t = 30, t = 60, t = 120, t = 240, t = 360 and t = 1080 min for plasma and plasma ultrafiltrate concentrations; urine at t = 0, t = 1, t = 3, t = 5 and t = 7 days. Samples were analyzed using atomic absorption spectrometry. Pharmacokinetics were analyzed using nonlinear mixed-effects modeling.

Results

Four patients received one ePIPAC, three patients received two ePIPAC, and thirteen patients received ≥ 3 ePIPAC. The population pharmacokinetic models adequately described the pharmacokinetics of oxaliplatin after ePIPAC. The plasma ultrafiltrate Cmax of oxaliplatin reached 1.36–1.90 µg/mL after 30 min with an AUC0–24 h of 9.6–11.7 µg/mL * h. The plasma Cmax reached 2.67–3.28 µg/mL after 90 min with an AUC0–24 h of 49.0–59.5 µg/mL * h. The absorption rate constant (Ka) was 1.13/h. Urine concentrations of oxaliplatin rapidly decreased to less than 3.60 µg/mL in 90% of the samples at day 7.

Discussion

Systemic exposure to oxaliplatin after ePIPAC seemed comparable to that after systemic chemotherapy, as described in other literature. Since this is an indirect comparison, future research should focus on the direct comparison between the systemic exposure to oxaliplatin after ePIPAC and after systemic chemotherapy.

Trial registration: NCT03246321, Pre-results; ISRCTN89947480, Pre-results; NTR6603, Pre-results; EudraCT: 2017-000927-29, Pre-results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Razenberg LG, Lemmens VE, Verwaal VJ, et al. Challenging the dogma of colorectal peritoneal metastases as an untreatable condition: results of a population-based study. Eur J Cancer. 2016;65:113–20.

    Article  Google Scholar 

  2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  Google Scholar 

  3. Klaver YL, Simkens LH, Lemmens VE, et al. Outcomes of colorectal cancer patients with peritoneal carcinomatosis treated with chemotherapy with and without targeted therapy. Eur J Surg Oncol. 2012;38(7):617–23.

    Article  CAS  Google Scholar 

  4. Koppe MJ, Boerman OC, Oyen WJ, Bleichrodt RP. Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg. 2006;243(2):212–22.

    Article  Google Scholar 

  5. Lemmens VE, Klaver YL, Verwaal VJ, Rutten HJ, Coebergh JW, de Hingh IH. Predictors and survival of synchronous peritoneal carcinomatosis of colorectal origin: a population-based study. Int J Cancer. 2011;128(11):2717–25.

    Article  CAS  Google Scholar 

  6. Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016;17(12):1709–19.

    Article  Google Scholar 

  7. Solass W, Kerb R, Murdter T, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–9.

    Article  Google Scholar 

  8. Reymond MA, Hu B, Garcia A, et al. Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator. Surg Endosc. 2000;14(1):51–5.

    Article  CAS  Google Scholar 

  9. Jacquet P, Stuart OA, Chang D, Sugarbaker PH. Effects of intra-abdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intraperitoneal administration. Anticancer Drugs. 1996;7(5):596–603.

    Article  CAS  Google Scholar 

  10. Esquis P, Consolo D, Magnin G, et al. High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis. Ann Surg. 2006;244(1):106–12.

    Article  Google Scholar 

  11. Solass W, Herbette A, Schwarz T, et al. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination with capnoperitoneum: proof of concept. Surg Endosc. 2012;26(3):847–52.

    Article  Google Scholar 

  12. Solass W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc. 2012;26(7):1849–55.

    Article  Google Scholar 

  13. Facy O, Al Samman S, Magnin G, et al. High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study. Ann Surg. 2012;256(6):1084–8.

    Article  Google Scholar 

  14. Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA. Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2013;20(7):2311–6.

    Article  Google Scholar 

  15. Eveno C, Haidara A, Ali I, Pimpie C, Mirshahi M, Pocard M. Experimental pharmacokinetics evaluation of chemotherapy delivery by PIPAC for colon cancer: first evidence for efficacy. Pleura Peritoneum. 2017;2(2):103–9.

    Article  Google Scholar 

  16. Willaert W, Sessink P, Ceelen W. Occupational safety of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Pleura Peritoneum. 2017;2(3):121–8.

    Article  Google Scholar 

  17. Graversen M, Lundell L, Fristrup C, Pfeiffer P, Mortensen MB. Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) as an outpatient procedure. Pleura Peritoneum. 2018;3(4):20180128.

    Article  Google Scholar 

  18. Kakchekeeva T, Demtroder C, Herath NI, et al. In Vivo Feasibility of Electrostatic Precipitation as an Adjunct to Pressurized Intraperitoneal Aerosol Chemotherapy (ePIPAC). Ann Surg Oncol. 2016;23(Suppl 5):592–8.

    Article  Google Scholar 

  19. Kuijpers AM, Mirck B, Aalbers AG, et al. Cytoreduction and HIPEC in the Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20(13):4224–30.

    Article  Google Scholar 

  20. Elias D, Bonnay M, Puizillou JM, et al. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13(2):267–72.

    Article  CAS  Google Scholar 

  21. Demtroder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. Colorectal Dis. 2016;18(4):364–71.

    Article  CAS  Google Scholar 

  22. Nowacki M, Alyami M, Villeneuve L, et al. Multicenter comprehensive methodological and technical analysis of 832 pressurized intraperitoneal aerosol chemotherapy (PIPAC) interventions performed in 349 patients for peritoneal carcinomatosis treatment: An international survey study. Eur J Surg Oncol. 2018;44(7):991–6.

    Article  Google Scholar 

  23. Mahteme H, Wallin I, Glimelius B, Pahlman L, Ehrsson H. Systemic exposure of the parent drug oxaliplatin during hyperthermic intraperitoneal perfusion. Eur J Clin Pharmacol. 2008;64(9):907–11.

    Article  CAS  Google Scholar 

  24. Ferron G, Dattez S, Gladieff L, et al. Pharmacokinetics of heated intraperitoneal oxaliplatin. Cancer Chemother Pharmacol. 2008;62(4):679–83.

    Article  CAS  Google Scholar 

  25. Perez-Ruixo C, Valenzuela B, Peris JE, et al. Population pharmacokinetics of hyperthermic intraperitoneal oxaliplatin in patients with peritoneal carcinomatosis after cytoreductive surgery. Cancer Chemother Pharmacol. 2013;71(3):693–704.

    Article  CAS  Google Scholar 

  26. Chalret du Rieu Q, White-Koning M, Picaud L, et al. Population pharmacokinetics of peritoneal, plasma ultrafiltrated and protein-bound oxaliplatin concentrations in patients with disseminated peritoneal cancer after intraperitoneal hyperthermic chemoperfusion of oxaliplatin following cytoreductive surgery: correlation between oxaliplatin exposure and thrombocytopenia. Cancer Chemother Pharmacol. 2014;74(3):571–82.

  27. Rovers KP, Lurvink RJ, Wassenaar EC, et al. Repetitive electrostatic pressurised intraperitoneal aerosol chemotherapy (ePIPAC) with oxaliplatin as a palliative monotherapy for isolated unresectable colorectal peritoneal metastases: protocol of a Dutch, multicentre, open-label, single-arm, phase II study (CRC-PIPAC). BMJ Open. 2019;9(7):e030408.

    Article  Google Scholar 

  28. Giger-Pabst U, Tempfer CB. How to Perform Safe and Technically Optimized Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC): Experience After a Consecutive Series of 1200 Procedures. J Gastrointest Surg. 2018;22(12):2187–93.

    Article  Google Scholar 

  29. Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res. 2000;6(4):1205–18.

    CAS  PubMed  Google Scholar 

  30. Burz C, Berindan-Neagoe IB, Balacescu O, et al. Clinical and pharmacokinetics study of oxaliplatin in colon cancer patients. J Gastrointestin Liver Dis. 2009;18(1):39–43.

    PubMed  Google Scholar 

  31. Elias DM, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 2003;12(3):755–69.

    Article  Google Scholar 

  32. Goodman MD, McPartland S, Detelic D, Saif MW. Chemotherapy for intraperitoneal use: a review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. J Gastrointest Oncol. 2016; 7(1):45–47.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This study received funding from the Catharina Research Foundation and the St. Antonius Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten J. Deenen PharmD PhD.

Ethics declarations

Disclosure

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurvink, R.J., Tajzai, R., Rovers, K.P. et al. Systemic Pharmacokinetics of Oxaliplatin After Intraperitoneal Administration by Electrostatic Pressurized Intraperitoneal Aerosol Chemotherapy (ePIPAC) in Patients with Unresectable Colorectal Peritoneal Metastases in the CRC-PIPAC Trial. Ann Surg Oncol 28, 265–272 (2021). https://doi.org/10.1245/s10434-020-08743-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-08743-9

Navigation