Skip to main content

Advertisement

Log in

Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Bismuth (Bi)-based electrode has aroused tremendous interest in potassium-ion batteries (PIBs) on account of its low cost, high electronic conductivity, low charge voltage and high theoretical capacity. However, the rapid capacity fading and poor lifespan induced by the normalized volume expansion (up to ~ 406%) and serious aggregation of Bi during cycling process hinder its application. Herein, bismuth molybdate (Bi2MoO6) microsphere assembled by 2D nanoplate units is successfully prepared by a facile solvothermal method and demonstrated as a promising anode for PIBs. The unique microsphere structure and the self-generated potassium molybdate (K-Mo-O species) during the electrochemical reactions can effectively suppress mechanical fracture of Bi-based anode originated from the volume variation during charge/discharge of the battery. As a result, the Bi2MoO6 microsphere without hybridizing with any other conductive carbon matrix shows superior electrochemical performance, which delivers a high reversible capacity of 121.7 mAh·g−1 at 100 mA·g−1 over 600 cycles. In addition, the assembled perylenetetracarboxylic dianhydride (PTCDA)//Bi2MoO6 full-cell coupled with PTCDA cathode demonstrates the potential application of Bi2MoO6 microsphere. Most importantly, the phase evolution of Bi2MoO6 microsphere during potassiation/depotassiation process is successfully deciphered by ex situ X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) technologies, which reveals a combination mechanism of conversion reaction and alloying/dealloying reaction for Bi2MoO6 anode. Our findings not only open a new way to enhance the performance of Bi-based anode in PIBs, but also provide useful implications to other alloy-type anodes for secondary alkali-metal ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.

    CAS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science2011, 334, 928–935.

    CAS  Google Scholar 

  3. Palacín, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev.2009, 38, 2565–2575.

    Google Scholar 

  4. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. Sodium-ion batteries. Adv. Funct. Mater.2013, 23, 947–958.

    CAS  Google Scholar 

  5. Yu, H. J.; Ren, Y.; Xiao, D. D.; Guo, S. H.; Zhu, Y. B.; Qian, Y. M.; Gu, L.; Zhou, H. S. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew. Chem., Int. Ed.2014, 53, 8963–8969.

    CAS  Google Scholar 

  6. Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater.2019, 9, 1900323.

    Google Scholar 

  7. Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sufides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater.2017, 29, 1700606.

    Google Scholar 

  8. Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc.2017, 139, 3316–3319.

    CAS  Google Scholar 

  9. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res.2019, 12, 1025–1031.

    CAS  Google Scholar 

  10. Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res.2020, 13, 802–809.

    CAS  Google Scholar 

  11. Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res.2019, 12, 2997–3002.

    CAS  Google Scholar 

  12. Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G.; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon2019, 155, 601–610.

    CAS  Google Scholar 

  13. Hu, J. X.; Xie, Y. Y.; Yin, M.; Zhang, Z. A. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. J. Energy Chem.2020, 49, 327–334.

    Google Scholar 

  14. Wang, B. Y.; Deng, Z. W.; Xia, Y. T.; Hu, J. X.; Li, H. J.; Wu, H.; Zhang, Q. B.; Zhang, Y.; Liu, H. K.; Dou, S. X. Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium-and potassium-ion storage. Adv. Energy Mater.2020, 10, 1903119.

    CAS  Google Scholar 

  15. Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater.2019, 29, 1808291.

    Google Scholar 

  16. Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater.2018, 8, 1801477.

    Google Scholar 

  17. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc.2015, 137, 11566–11569.

    CAS  Google Scholar 

  18. Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater.2017, 8, 161–168.

    Google Scholar 

  19. Jin, T.; Li, H. X.; Li, Y.; Jiao, L. F.; Chen, J. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy2018, 50, 462–467.

    CAS  Google Scholar 

  20. Zhao, Y. X.; Ren, X. C.; Xing, Z. J.; Zhu, D. M.; Tian, W. F.; Guan, C. R.; Yang, Y.; Qin, W. M.; Wang, J.; Zhang, L. L. et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small2019, 16, 1905789.

    Google Scholar 

  21. Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun.2016, 52, 9279–9282.

    CAS  Google Scholar 

  22. Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano2020, 14, 1018–1026

    CAS  Google Scholar 

  23. Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A2019, 7, 5504–5512.

    CAS  Google Scholar 

  24. Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A2019, 7, 9305–9315.

    CAS  Google Scholar 

  25. Chu, J. H.; Wang, W.; Yu, Q. Y.; Lao, C. Y.; Zhang, L.; Xi, K.; Han, K.; Xing, L. D.; Song, L.; Wang, M. et al. Open ZnSe/C nanocages: Multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. J. Mater. Chem. A2020, 8, 779–788.

    CAS  Google Scholar 

  26. Song, K. M.; Liu, C. T.; Mi, L. W.; Chou, S. L.; Chen, W. H.; Shen, C. Y. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small2019, 1903194.

  27. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed.2018, 57, 4687–4691.

    CAS  Google Scholar 

  28. Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater.2018, 8, 1703288.

    Google Scholar 

  29. Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater.2018, 8, 1703496.

    Google Scholar 

  30. Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium-and potassium-ion batteries. J. Mater. Chem. A2019, 7, 4913–4921.

    CAS  Google Scholar 

  31. Su, S. L.; Liu, Q.; Wang, J.; Fan, L.; Ma, R. F.; Chen, S. H.; Han, X.; Lu, B. A. Control of SEI formation for stable potassium-ion battery anode by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces2019, 11, 22474–22480.

    CAS  Google Scholar 

  32. Xie, F. X.; Zhang, L.; Chen, B.; Chao, D. L.; Gu, Q. F.; Johannessen, B.; Jaroniec, M.; Qiao, S. Z. Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter2019, 1, 1681–1693.

    Google Scholar 

  33. Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci.2018, 9, 6193–6198.

    CAS  Google Scholar 

  34. Qi, S. H.; Xie, X.; Peng, X. W.; Ng, D. H. L.; Wu, M. G.; Liu, Q. H.; Yang, J. L.; Ma, J. M. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys. Status Solidi RRL.2019, 13, 1900209.

    CAS  Google Scholar 

  35. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@ N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater.2019, 29, 1809195.

    Google Scholar 

  36. Sun, J. G.; Tu, W. Q.; Chen, C.; Plewa, A.; Ye, H. L.; Oh, J. A. S.; He, L. C.; Wu, T.; Zeng, K. Y.; Lu, L. Chemical bonding construction of reduced graphene oxide-anchored few-layer bismuth oxychloride for synergistically improving sodium-ion storage. Chem. Mater.2019, 31, 7311–7319.

    CAS  Google Scholar 

  37. Dubal, D. P.; Jayaramulu, K.; Zboril, R.; Fischer, R. A.; Gomez-Romero, P. Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: Beyond intercalation strategies. J. Mater. Chem. A2018, 6, 6096–6106.

    CAS  Google Scholar 

  38. Li, W.; Xu, Y.; Dong, Y. L.; Wu, Y. H.; Zhang, C. L.; Zhou, M.; Fu, Q.; Wu, M. H.; Lei, Y. Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chem. Commun.2019, 55, 6507–6510.

    CAS  Google Scholar 

  39. Yu, H. B.; Jiang, L. B.; Wang, H.; Huang, B. B.; Yuan, X. Z.; Huang, J. H.; Zhang, J.; Zeng, G. M. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review. Small2019, 15, 1901008.

    Google Scholar 

  40. Xing, Z.; Kong, W. H.; Wu, T. W.; Xie, H. T.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Sun, X. P. Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3. ACS Sustainable Chem. Eng.2019, 7, 12692–12696.

    CAS  Google Scholar 

  41. Zhang, Y.; Zhao, G. G.; Ge, P.; Wu, T. J.; Li, L.; Cai, P.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Bi2MoO6 microsphere with double-polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem.2019, 58, 6410–6421.

    CAS  Google Scholar 

  42. Yuan, S.; Zhao, Y.; Chen, W. B.; Wu, C.; Wang, X. Y.; Zhang, L. N.; Wang, Q. Self-assembled 3D hierarchical porous Bi2MoO6 microspheres toward high capacity and ultra-long-life anode material for Li-ion batteries. ACS Appl. Mater. Interfaces2017, 9, 21781–21790.

    CAS  Google Scholar 

  43. Hardcastle, F. D.; Wachs, I. E. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy. J. Phys. Chem.1991, 95, 10763–10772.

    CAS  Google Scholar 

  44. Wang, S. Y.; Ding, X.; Yang, N.; Zhan, G. M.; Zhang, X. H.; Dong, G. H.; Zhang, L. Z.; Chen, H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl. Catal. B Environ.2020, 265, 118585.

    Google Scholar 

  45. Zhai, X. G.; Gao, J. P.; Xue, R. N.; Xu, X. Y.; Wang, L. Y.; Tian, Q.; Liu, Y. Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance. J. Colloid Interf. Sci.2018, 518, 242–251.

    CAS  Google Scholar 

  46. Wang, J.; Wang, B.; Liu, Z. M.; Fan, L.; Zhang, Q. F.; Ding, H. B.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. A. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv. Sci.2019, 6, 1900904.

    Google Scholar 

  47. Lu, X.; Wang, Z. Y.; Liu, K.; Luo, J. M.; Wang, P.; Niu, C. M.; Wang, H. K.; Li, W. Y. Hierarchical Sb2MoO6 microspheres for highperformance sodium-ion battery anode. Energy Storage Mater.2019, 17, 101–110.

    Google Scholar 

  48. Cao, K. Z.; Liu, H. Q.; Li, W. Y.; Han, Q. Q.; Zhang, Z.; Huang, K. J.; Jing, Q. S.; Jiao, L. F. CuO nanoplates for high-performance potassium-ion batteries. Small2019, 15, 1901775.

    Google Scholar 

  49. Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater.2018, 8, 1802386.

    Google Scholar 

  50. Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater.2019, 9, 1803894.

    Google Scholar 

  51. Li, P.; Hwang, J. Y.; Park, S. M.; Sun, Y. K. Superior lithium/ potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. J. Mater. Chem. A2018, 6, 12551–12558.

    CAS  Google Scholar 

  52. Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J. Mater. Chem. A2019, 7, 5760–5768.

    CAS  Google Scholar 

  53. Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater.2019, 29, 1906126.

    CAS  Google Scholar 

  54. Hu, J. X.; Xie, Y. Y.; Zhou, X. L.; Zhang, Z. A. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage. ACS Appl. Mater. Interfaces2020, 12, 1232–1240.

    CAS  Google Scholar 

  55. Li, N.; Zhang, F.; Tang, Y. B. Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A2018, 6, 17889–17895.

    CAS  Google Scholar 

  56. Li, P.; Zheng, X. B.; Yu, H. X.; Zhao, G. Q.; Shu, J.; Xu, X.; Sun, W. P.; Dou, S. X. Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Mater.2019, 16, 512–518.

    Google Scholar 

  57. Li, J. M.; Du, K.; Lai, Y. Q.; Chen, Y. X.; Zhang, Z. A. ZnSb2O6: An advanced anode material for Li-ion batteries. J. Mater. Chem. A2017, 5, 10843–10848.

    CAS  Google Scholar 

  58. Yang, C.; Lv, F.; Zhang, Y. L.; Wen, J.; Dong, K.; Su, H.; Lai, F. L.; Qian, G. Y.; Wang, W.; Hilger, A. et al. Confined Fe2VO4cnitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater.2019, 9, 1902674.

    CAS  Google Scholar 

  59. Sun, C. F.; Hu, J. K.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. H. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett.2016, 16, 5875–5882.

    CAS  Google Scholar 

  60. Fan, L.; Ma, R. F.; Wang, J.; Yang, H. G.; Lu, B. A. An ultrafast and highly stable potassium-organic battery. Adv. Mater.2018, 30, 1805486.

    Google Scholar 

  61. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater.2014, 26, 3854–3859.

    CAS  Google Scholar 

Download references

Acknowledgements

This work would like to appreciate the support of the Innovation Program of Central South University (No. 2018zzts139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhian Zhang.

Electronic Supplementary Material

12274_2020_2906_MOESM1_ESM.pdf

Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xie, Y., Zheng, J. et al. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 13, 2650–2657 (2020). https://doi.org/10.1007/s12274-020-2906-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2906-6

Keywords