Skip to main content
Log in

Stabilization of Magnetite Nanoparticles in Humic Acid Medium and Study of Their Sorption Properties

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The formation kinetics of magnetite nanoparticles upon their stabilization with potassium humate (PH) has been studied. It has been shown that the properties of Fe3O4/PH composite particles depend essentially on the time interval between the onset of nucleation and the moment of PH addition, as well as on PH concentration during the synthesis. It has been found that the introduction of PH in the optimum concentration gives rise to the formation of a protective adsorption layer, which provides magnetic particles with resistance to aggregation and sedimentation. The study of the sorption properties of magnetic Fe3O4/PH particles with respect to an antibiotic, ciprofloxacin, as depending on the synthesis conditions and characteristics of the particles has shown that the composite particles remove the antibiotic from aqueous solutions much more efficiently than do the unmodified magnetite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., and Berensmeier, S., Sep. Purif. Technol., 2015, vol. 150, p. 29.

    Article  Google Scholar 

  2. Roth, H.-C., Schwaminger, S.P., Peng, F., and Berensmeier, S., Chem.Open, 2016, p. 183.

    Google Scholar 

  3. Bauer, L.M., Situ, S.F., Griswold, M.A., and Samia, A.C.S., Nanoscale, 2016, vol. 8, p. 12162.

    Article  CAS  Google Scholar 

  4. Colombo, M., Romero, S.C., Casula, M.F., Gutierrez, L., Morales, M.P., Bohm, I.B., Heverhagen, J.T., Prosperi,PH D., and Parak, W.J., Chem. Soc. Rev., 2012, vol. 41, p. 4306.

    Article  CAS  Google Scholar 

  5. Tombácz, E., Turcu, R., Socoliuc, V., and Vekas, L., Biochem. Biophys. Res. Commun., 2015, vol. 468, p. 442.

    Article  Google Scholar 

  6. Rossi, L.M., Costa, N.J.S., Silva, F.P., and Wojcieszak, R., Green Chem., 2014, vol. 16, p. 2906.

    Article  CAS  Google Scholar 

  7. Tian, L.-L., Zhang, M.-J., Wu, C., Wei, Y., Zheng, J.-X., and Lin, L.-P., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 26284.

    Article  CAS  Google Scholar 

  8. Li, Z., Lowry, G.V., Fan, J., Liu, F., and Chen, J., Sci. Total Environ., 2018, vol. 628, p. 177.

    PubMed  Google Scholar 

  9. Verlicchi, P., Al Aukidy, M., and Zambello, E., Sci. Total Environ., 2012, vol. 429, p. 123.

    Article  CAS  Google Scholar 

  10. Massart, R., IEEE Trans. Magn., 1981, vol. 17, p. 1247.

    Article  Google Scholar 

  11. Kydralieva, K.A., Yurishcheva, A.A., Dzhardimalieva, G.I., and Jorobekova, S.J., J. Inorg. Organomet. Polym. Mater., 2016, vol. 26, p. 1212.

    Article  CAS  Google Scholar 

  12. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Metallopolimernye nanokompozity (Metal Polymer Nanocomposites), Moscow: Khimiya, 2000.

  13. Irzhak, V.I., Rev. J. Chem., 2016, vol. 6, p. 370.

    Article  Google Scholar 

  14. Descamps, M. and Willart, J.-F., Int. J. Pharm., 2018, vol. 542, p. 186.

    Article  CAS  Google Scholar 

  15. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Usp. Khim., 2003, vol. 74, p. 539.

    Google Scholar 

  16. Munoz, M., Pedro, Z.M., Casas, J.A., and Rodriguez, J.J., Appl. Catal. B, 2015, vol. 176, p. 249.

    Article  Google Scholar 

  17. Su, C., J. Hazard. Mater., 2017, vol. 322, p. 48.

    Article  CAS  Google Scholar 

  18. Philippe, A. and Schaumann, G.E., Environ. Sci. Technol., 2014, vol. 48, p. 8946.

    Article  CAS  Google Scholar 

  19. Aleksashkin, I.V., Pershina, E.D., and Kazdobin, K.A., Uchen. Zapiski Tavr. Nats. Univ. im. V.I. Vernadskogo, Ser. Biol.,Khim., 2010, vol. 23, no. 3, p. 227.

    Google Scholar 

  20. http://www.micromeritics.com/Pressroom/Press-Release-List/Micromeritics-Analytical-Services-MAS-Reports-Average-Particle-Size-of-Nanoparticles.aspx.

  21. Kumarage, W.G.C., Wijesundera, R.P., Seneviratne, V.A., Jayalath, C.P., Vargá, T., Nandasiri, M.I., and Dassanayake, B., Mater. Chem. Phys., 2017, vol. 200, p. 1.

    Article  CAS  Google Scholar 

  22. Zhorobekova, Sh.Zh., Makroligandnye svoistva guminovykh kislot (Macroligand Properties of Humic Acids), Bishkek: Ilim, 1987.

  23. Nuzzo, A., Sánchez, A., Fontaine, B., and Piccolo, A., J. Geochem. Explor., 2013, vol. 129, p. 1.

    Article  CAS  Google Scholar 

  24. Illés, E. and Tombácz, E., J. Colloid Interface Sci., 2006, vol. 295, p. 115.

    Article  Google Scholar 

  25. Kokorin, A.I., Kulyabko, L.S., Degtyarev, E.N., Kovarskii, A.L., Patsaeva, S.V., Dzhardimalieva, G.I., Yurishcheva, A.A., and Kydralieva, K.A., Russ. J. Phys. Chem. B, 2018, vol. 12, no. 1, p. 172.

    Article  CAS  Google Scholar 

  26. Illés, E. and Tombácz, E., Colloids Surf. A, 2003, vol. 230, p. 99.

    Article  Google Scholar 

  27. Yang, K., Lin, D.H., and Xing, B.S., Langmuir, 2009, vol. 25, p. 3571.

    Article  CAS  Google Scholar 

  28. Hur, J. and Schlautman, M.A., J. Colloid Interface Sci., 2004, vol. 277, p. 264.

    Article  CAS  Google Scholar 

  29. Esmaeili, H., Ebrahimi, A., Hajian, M., and Pourzamani, H.R., Int. J. Environ. Health Eng., 2012, vol. 1, p. 33.

    Article  Google Scholar 

  30. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  CAS  Google Scholar 

  31. Lippens, B.C. and De Boer, J.H., J. Catal., 1965, vol. 4, p. 319.

    Article  CAS  Google Scholar 

  32. Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  CAS  Google Scholar 

  33. Ahmed, M.B., Zhou, J.L., Ngo, H.H., and Guo, W., Sci. Total Environ., 2015, vol. 532, p. 112.

    Article  CAS  Google Scholar 

  34. Gu, C. and Karthikeyan, K.G., Environ. Sci. Technol., 2005, vol. 39, p. 9166.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to Cand. Chem. A.V. Sybachin (Department of Macromolecular Compounds, Moscow State University) for help in studying colloid properties of nanoparticles.

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-33-01270/18 and 17-43-500631 and performed within the framework of a state order to the Institute of Problems of Chemical Physics, Russian Academy of Sciences (0089-2019-0008). Sorption properties of materials with respect to ciprofloxacin were studied within the framework of a state order to the Institute of Chemistry, Far East Branch, Russian Academy of Sciences (265-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Dzhardimalieva.

Ethics declarations

The authors declare that they have no conflict of intere-st.

Additional information

Translated by L. Tkachenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhardimalieva, G.I., Irzhak, V.I., Bratskaya, S.Y. et al. Stabilization of Magnetite Nanoparticles in Humic Acid Medium and Study of Their Sorption Properties. Colloid J 82, 1–7 (2020). https://doi.org/10.1134/S1061933X20010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20010032

Navigation