Skip to main content

Transitions and Drivers of Land Use/Land Cover Change in Hawaiʻi: A Case Study of Maui

  • Chapter
  • First Online:
Land Cover and Land Use Change on Islands
  • 628 Accesses

Abstract

This chapter assessed the drivers of land use/land cover change and describes observed transitions in Hawaiʻi (USA), using the island of Maui as a case study. Over the last half-century, Maui has experienced periods of intensive agriculture, rapid urban development, population migration, and environmental change. To better understand landscape-level change on Maui, this chapter compared the available land cover products and quantified the spatial transitions between them. Between 1976 and the early 2000s, all products showed that agricultural land cover declined significantly (losses of 46–63%), built-up area expanded (gains of 105–273%), and grassland and bare land cover also increased (gains of 113–196%, and 46–137%, respectively). These transitions reflected documented shifts in Maui land management and environmental change over the past 40 years, but poor Kappa scores (from 0.47 to 0.62) highlighted the spatial disagreement between the different classifications. Furthermore, when each classification was examined individually, only the NOAA Coastal Change Analysis Program (C-CAP) product adequately reflected the more recent changes of the last 10–20 years. Based on this assessment, the NOAA C-CAP product is the recommended existing tool for analyzing spatial change in Hawaiʻi. It was designed with ecosystems management and change detection in mind and is the only high-resolution, internally-consistent product that is updated at regular intervals. Newer high-resolution imagery and ancillary spatial data on the drivers of change will provide opportunities to refine existing products and generate more recent information for tracking land cover change in Hawaiʻi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data, Rep. No. 964. Land Cover Institute, Reston.

    Google Scholar 

  • Anderson, T. R., Fletcher, C. H., Barbee, M. M., Frazer, L. N., & Romine, B. M. (2015). Doubling of coastal erosion under rising sea level by mid-century in Hawaiʻi. Natural Hazards, 78, 75–103.

    Google Scholar 

  • Asner, G. P., Hughes, R. F., Mascaro, J., Uowolo, A. L., Knapp, D. E., Jacobson, J., … Clark, J. K. (2011). High-resolution carbon mapping on the million-hectare Island of Hawaiʻi. Frontiers in Ecology and the Environment, 9, 434–439.

    Google Scholar 

  • Asner, G. P., Mascaro, J., Muller-Landau, H. C., Vieilledent, G., Vaudry, R., Rasamoelina, M., … van Breugel, M. (2012). A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 168, 1147–1160.

    Google Scholar 

  • Bartholomew, D. P., Hawkins, R. A., & Lopez, J. A. (2012). Hawaiʻi pineapple: The rise and fall of an industry. HortScience, 47, 1390–1398.

    Google Scholar 

  • Benning, T. L., LaPointe, D., Atkinson, C. T., & Vitousek, P. M. (2002). Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proceedings of the National Academy of Sciences of the United States of America, 99, 14246–14249.

    CAS  Google Scholar 

  • Blackford, M. (2001). Fragile paradise: The impact of tourism on Maui, 1959–2000. Lawrence: University of Kansas Press.

    Google Scholar 

  • Brewington, L., Keener, V., Finucane, M., & Eaton, P. (2017). Participatory scenario planning for climate change adaptation using remote sensing and GIS. In S. J. Walsh (Ed.), Remote sensing for societal benefits (pp. 236–252). Amsterdam: Elsevier.

    Google Scholar 

  • Clague, D., & Dalrymple, G. (1989). Tectonics, geochronology, and origin of the Hawaiian emperor volcanic chain. In E. Winterer, D. Hussong, & R. Decker (Eds.), The eastern Pacific Ocean and Hawaiʻi (pp. 188–217). Boulder: The Geological Society of America.

    Google Scholar 

  • Cooper, G., & Daws, G. (1985). Land and power in Hawaiʻi: The Democratic years. Honolulu: University of Hawaiʻi Press.

    Google Scholar 

  • Crausbay, S. D., Frazier, A. G., Giambelluca, T. W., Longman, R. J., & Hotchkiss, S. C. (2014). Moisture status during a strong El Niño explains a tropical montane cloud forest’s upper limit. Oecologia, 175, 273–284.

    Google Scholar 

  • Cuddihy, L., & Stone, C. (1990). Alteration of native Hawaiian vegetation: Effects of humans, their activities and introductions. Honolulu: University of Hawaiʻi Cooperative National Park Resources Studies Unit.

    Google Scholar 

  • D’iorio, M., Jupiter, S. D., Cochran, S. A., & Potts, D. C. (2007). Optimizing remote sensing and GIS tools for mapping and managing the distribution of an invasive mangrove (Rhizophora mangle) on South Molokaʻi, Hawaiʻi. Marine Geodesy, 30, 125–144.

    Google Scholar 

  • Ellsworth, L. M., Litton, C. M., Dale, A. P., & Miura, T. (2014). Invasive grasses change landscape structure and fire behaviour in Hawaiʻi. Applied Vegetation Science, 17, 680–689.

    Google Scholar 

  • Elmore, A. J., Asner, G. P., & Hughes, R. F. (2005). Satellite monitoring of vegetation phenology and fire fuel conditions in Hawaiian drylands. Earth Interactions, 9, 1–21.

    Google Scholar 

  • Fletcher, C., Mullane, R., & Richmond, B. (1997). Beach loss along armored shorelines on Oahu, Hawaiian Islands. Journal of Coastal Research, 13, 209–215.

    Google Scholar 

  • Fletcher, C., Rooney, J., Barbee, M., Lim, S. C., & Richmond, B. (2003). Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaiʻi. Journal of Coastal Research, Special Issue, 38, 106–124.

    Google Scholar 

  • Fordham, D. A., & Brook, B. W. (2010). Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation, 19, 329–342.

    Google Scholar 

  • Fortini, L. B., Vorsino, A. E., Amidon, F. A., Paxton, E. H., & Jacobi, J. D. (2015). Large-scale range collapse of Hawaiian forest birds under climate change and the need for 21st century conservation options. PLoS One, 10, e0140389.

    Google Scholar 

  • Giambelluca, T., Chen, Q., Frazier, A., Price, J., Chen, Y., Chu, P., … Delparte, D. (2013). Online rainfall atlas of Hawaiʻi. Bulletin of the American Meteorological Society, 94, 313–316.

    Google Scholar 

  • Gon III, S. (2006). The Hawaiʻi gap analysis project final report. University of Hawaiʻi, Research Corporation of the University of Hawaiʻi, Honolulu.

    Google Scholar 

  • Hawaiʻi Department of Land and Natural Resources. (2015). Hawaiʻi state wildlife action plan (SWAP). Honolulu: H.T. Harvey and Associates.

    Google Scholar 

  • Hawaiʻi State GIS. (2019). Land use land cover of main Hawaiian Islands as of 1976. Retrieved April 19, 2019, from https://geoportal.Hawaiʻi.gov/datasets/e00b356bcc9d4fabb6e07d6319a7b543_11

    Google Scholar 

  • Hawaiʻi Tourism Authority. (2017). 2017 annual visitor research report. Honolulu: Hawaiʻi Tourism Authority.

    Google Scholar 

  • Hay, J. E., Forbes, D. L., & Mimura, N. (2013). Understanding and managing global change in small islands. Sustainability Science, 8, 303–308.

    Google Scholar 

  • Hiatt, W. (1993). Hawaiʻi: Growth, government, and economy. Journal of Urban Planning and Development, 119, 97–115.

    Google Scholar 

  • Jacobi, J. D., Price, J., Fortini, L. B., Gon III, S., & Berkowitz, P. (2017a). Carbon assessment of Hawaiʻi. US Geological Survey data release, https://doi.org/10.5066/F7DB80B9.

  • Jacobi, J. D., Price, J., Fortini, L. B., Gon, S., III, & Berkowitz, P. (2017b). Baseline land cover. In P. Selmants, C. P. Giardina, J. D. Jacobi, & Z. Zhu (Eds.), Baseline and projected future carbon storage and carbon fluxes in ecosystems of Hawai‘i (US geological survey professional paper 1834) (pp. 9–20). Reston: US Geological Survey.

    Google Scholar 

  • Juvik, S., & Juvik, J. O. (1998). Atlas of Hawaiʻi (3rd Rev. ed.). Honolulu: University of Hawaiʻi Press.

    Google Scholar 

  • Keener, V. W., Helweg, D. A., Asam, S., Balwani, S., Burkett, M., Fletcher, C., … Tribble, G. (2018). Ch. 27: Hawai‘i and U.S. affiliated Pacific Islands. In Impacts, risks, and adaptation in the United States: Fourth national climate assessment (Vol. II, pp. 1242–1308). Washington, DC: US Global Change Research Program.

    Google Scholar 

  • Kerr, S. A. (2005). What is small island sustainable development about? Ocean & Coastal Management, 48, 503–524.

    Google Scholar 

  • Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., … Barthlott, W. (2009). A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences, 106, 9322–9327.

    CAS  Google Scholar 

  • Kirch, P. (1982). The impact of the prehistoric Polynesians of the Hawaiian ecosystem. Pacific Science, 36, 1–14.

    Google Scholar 

  • Kirch, P. (2010). How chiefs became kings: Divine kingship and the rise of archaic states in ancient Hawaiʻi. Berkeley: University of California Press.

    Google Scholar 

  • Kirch, P., Coil, J., Hartshorn, A., Jeraj, M., Vitousek, P. M., & Chadwick, O. (2005). Intensive dryland farming on the leeward slopes of Haleakala, Maui, Hawaiian Islands: Archaeological, archaeobotanical, and geochemical perspectives. World Archaeology, 37, 240–258.

    Google Scholar 

  • Kirch, P. V., Holson, J., & Baer, A. (2009). Intensive dryland agriculture in Kaupō, Maui, Hawaiian Islands. Asian Perspectives, 48, 265–290.

    Google Scholar 

  • Krushelnycky, P. D., Loope, L. L., Giambelluca, T. W., Starr, F., Starr, K., Drake, D. R., … Robichaux, R. H. (2013). Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant. Global Change Biology, 19, 911–922.

    Google Scholar 

  • Kueffer, C., Daehler, C. C., Torres-Santana, C. W., Lavergne, C., Meyer, J.-Y., Otto, R., & Silva, L. (2010). A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 12, 145–161.

    Google Scholar 

  • Kurashima, N., & Kirch, P. (2011). Geospatial modeling of pre-contact Hawaiian production systems on Molokaʻi Island, Hawaiian Islands. Journal of Archaeological Science, 38, 3662–3674.

    Google Scholar 

  • Ladefoged, T. N., & Graves, M. W. (2008). Variable development of dryland agriculture in Hawaiʻi: A fine-grained chronology from the Kohala field system, Hawaiʻi Island. Current Anthropology, 49, 771–802.

    Google Scholar 

  • Landfire. (2019a). Biophysical Settings Layer. US Department of Agriculture and US Department of the Interior. Retrieved July 9, 2019, from https://www.landfire.gov/evt.php

  • Landfire. (2019b). Existing Vegetation Type. US Department of Agriculture and US Department of the Interior. Retrieved July 9, 2019, from https://www.landfire.gov/evt.php

  • Leuschner, C., & Schulte, M. (1991). Microclimatological investigations in the tropical alpine scrub of Maui, Hawaiʻi: Evidence for a drought-induced alpine timberline. Pacific Science, 45, 152–168.

    Google Scholar 

  • Lincoln, N., & Ladefoged, T. (2014). Agroecology of pre-contact Hawaiian dryland farming: The spatial extent, yield and social impact of Hawaiian breadfruit groves in Kona, Hawaiʻi. Journal of Archaeological Science, 49, 192–202.

    Google Scholar 

  • Maclennan, C. (2007). An introduction to WAI: Indigenous water, industrial water in Hawaiʻi. Organization and Environment, 20, 497–505.

    Google Scholar 

  • Margriter, S. C., Bruland, G. L., Kudray, G. M., & Lepczyk, C. A. (2014). Using indicators of land-use development intensity to assess the condition of coastal wetlands in Hawaiʻi. Landscape Ecology, 29, 517–528.

    Google Scholar 

  • Miller, T. L., & Fletcher, C. H. (2003). Waikiki: Historical analysis of an engineered shoreline. Journal of Coastal Research, 19, 1026–1043.

    Google Scholar 

  • Morales, R. M., Miura, T., & Idol, T. (2008). An assessment of Hawaiian dry forest condition with fine resolution remote sensing. Forest Ecology and Management, 255, 2524–2532.

    Google Scholar 

  • National Park Service. (2019). Haleakala National Park. National Park Service. Retrieved September 2, 2019, from https://www.nps.gov/hale/index.htm

  • NOAA Office for Coastal Management. (2018). C-CAP land cover atlas. Coastal change analysis program (C-CAP) high-resolution land cover. NOAA Office for Coastal Management, Charleston. Retrieved November, 19, 2018, from https://coast.noaa.gov/digitalcoast/tools/lca.html

  • Pelling, M., & Uitto, J. I. (2001). Small island developing states: Natural disaster vulnerability and global change. Global Environmental Change Part B: Environmental Hazards, 3, 49–62.

    Google Scholar 

  • Perroy, R. L., Melrose, J., & Cares, S. (2016). The evolving agricultural landscape of post-plantation Hawai‘i. Applied Geography, 76, 154–162.

    Google Scholar 

  • Ponette-Gonzalez, A. G., Marin-Spiotta, E., Brauman, K. A., Farley, K. A., Weathers, K. C., & Young, K. R. (2014). Hydrologic connectivity in the high-elevation tropics: Heterogeneous responses to land change. Bioscience, 64, 92–104.

    Google Scholar 

  • Rhodes, D. (2001). Changes in the sandalwood trade of Hawaiʻi. US National Park Service. Retrieved from https://www.nps.gov/parkhistory/online_books/kona/history5e.htm

  • Rollins, M. G. (2009). LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire, 18, 235–249.

    Google Scholar 

  • Scott, J. M., Davis, F., Csuti, B., Noss, R., Butterfield, B., Groves, C., … Wright, R. G. (1993). Gap analysis: A geographic approach to protection of biological diversity. Wildlife Monographs, 123, 3–41.

    Google Scholar 

  • Spatz, D. R., Newton, K. M., Heinz, R., Tershy, B., Holmes, N. D., Butchart, S. H. M., & Croll, D. A. (2014). The biogeography of globally threatened seabirds and island conservation opportunities. Conservation Biology, 28, 1282–1290.

    Google Scholar 

  • Stauffer, R. H. (2004). Kahana: How the land was lost. Honolulu: University of Hawaiʻi Press.

    Google Scholar 

  • Suryanata, K. (2002). Diversified agriculture, land use, and agrofood networks in Hawaiʻi. Economic Geography, 78, 71–86.

    Google Scholar 

  • Tanji, M. (2016). Operations winding down at HC&S. The Maui News, Wailuku.

    Google Scholar 

  • US Census Bureau. (2010). Census 2010. US Census Bureau, Washington. Retrieved from https://www.census.gov/2010census/

  • Walsh, S. J., Brewington, L., Shao, Y., Laso, F., Bilsborrow, R. E., Nazario, J. A., … Pizzitutti, F. (this volume). Social-ecological drivers of land cover/land use change on islands: A synthesis of the patterns and processes of change. In Land cover and land use change on islands: Social and ecological threats to sustainability. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Brewington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brewington, L. (2020). Transitions and Drivers of Land Use/Land Cover Change in Hawaiʻi: A Case Study of Maui. In: Walsh, S.J., Riveros-Iregui, D., Arce-Nazario, J., Page, P.H. (eds) Land Cover and Land Use Change on Islands. Social and Ecological Interactions in the Galapagos Islands. Springer, Cham. https://doi.org/10.1007/978-3-030-43973-6_4

Download citation

Publish with us

Policies and ethics