Skip to main content
Log in

In-situ crystallization of sildenafil during ionic crosslinking of alginate granules

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogel particles containing drug crystals were investigated for the development of drug formulations with improved processability, bioavailability, and physical stability. However, crystal engineering inside hydrogel particles has been limited due to various difficulties involved in the preparation processes and their control. This study demonstrates the crosslinking of alginate granules and the simultaneous crystallization of a drug, sildenafil, inside the granules by using a simple and scalable preparation technique. The particle size of the drug crystals was successfully decreased to the submicron range while their crystallinity could be controlled by the processing parameters. Moreover, these results are shown to be due to the strong interactions between the polymer chains and the drug as well as the diffusion-limited processes of solvent, antisolvent, sildenafil, alginate, and crosslinking ions (Ca2+). This simple crystallization technique will be useful for the development of novel drug delivery systems based on hydrogels and drug crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ma, Y. Shi, D. A. Pena, L. Peng and G. Yu, Angew. Chem. Int. Ed., 54, 7376 (2015).

    Article  CAS  Google Scholar 

  2. P. I. Lee, J. Controlled Release, 2, 277 (1985).

    Article  CAS  Google Scholar 

  3. B. S. Kim, J. Leong, S. J. Yu, Y. Cho, C. G. Park, D. H. Kim, E. Ko, S. G. Im, J. Lee and Y. J. Kim, Small, 15(21), 1900765 (2019)

    Article  Google Scholar 

  4. J. Zhou, G. Wang, L. Zou, L. Tang, M. Marquez and Z. Hu, Biomacromolecules, 9, 142 (2007).

    Article  Google Scholar 

  5. M. J. Serpe, K. A. Yarmey, C. M. Nolan and L. A. Lyon, Biomacromolecules, 6, 408 (2005).

    Article  CAS  Google Scholar 

  6. D. Juric, N. A. Rohner and H. A. von Recum, Macromol. Biosci., 19, 1800246 (2019).

    Article  Google Scholar 

  7. H. Lee, Y. Jeong and T. G. Park, Biomacromolecules, 8, 3705 (2007).

    Article  CAS  Google Scholar 

  8. L. Wu, J. Zhang and W. Watanabe, Adv. Drug Deliv. Rev., 63, 456 (2011).

    Article  CAS  Google Scholar 

  9. A. Z. M. Badruddoza, P. D. Godfrin, A. S. Myerson, B. L. Trout and P. S. Doyle, Adv. Healthc. Mater., 5, 1960 (2016).

    Article  CAS  Google Scholar 

  10. T. Gu, E. W. Yeap, Z. Cao, D. Z. Ng, Y. Ren, R. Chen, S. A. Khan and T A. Hatton, Adv. Healthc. Mater., 7, 1700797 (2018).

    Article  Google Scholar 

  11. D. A. Acevedo, J. Ling, K. Chadwick and Z. K. Nagy, Cryst. Growth Des., 16, 4263 (2016).

    Article  CAS  Google Scholar 

  12. H. B. Eral, V. López-Mejías, M. O’Mahony, B. L. Trout, A. S. Myerson and P. S. Doyle, Cryst. Growth Des., 14, 2073 (2014).

    Article  CAS  Google Scholar 

  13. J. E. Mealy, J. J. Chung, H. H. Jeong, D. Issadore, D. Lee, P. Atluri and J. A. Burdick, Adv. Mater., 30, 1705912 (2018).

    Article  Google Scholar 

  14. J.-Y. Choi, J. Y. Yoo, H.-S. Kwak, B. U. Nam and J. Lee, Curr. Appl. Phys., 5, 472 (2005).

    Article  Google Scholar 

  15. L. Gao, G. Liu, J. Ma, X. Wang, L. Zhou, X. Li and F. Wang, Pharm. Res., 30, 307 (2013).

    Article  CAS  Google Scholar 

  16. C. M. Keck and R. H. Müller, Eur. J. Pharm. Biopharm., 62, 3 (2006).

    Article  CAS  Google Scholar 

  17. L.-L. Shia, W.-J. Xua, Q.-R. Caoa, M. Yanga and J.-H. Cui, J. Pharm. Sci., 69, 327 (2014).

    Google Scholar 

  18. B. Van Eerdenbrugh, G. Van den Mooter and P. Augustijns, Int. J. Pharm., 364, 64 (2008).

    Article  CAS  Google Scholar 

  19. Y. Lu, Y. Lv and T. Li, Adv. Drug. Deliver. Rev., 143, 1 (2019).

    Article  Google Scholar 

  20. Z. Chai, D. Ran, L. Lu, C. Zhan, H. Ruan, X. Hu, C. Xie, K. Jiang, J. Li and J. Zhou, ACS Nano, 13, 5591 (2019).

    Article  CAS  Google Scholar 

  21. V. K. Pawar, Y. Singh, J. G. Meher, S. Gupta and M. K. Chourasia, J. Controlled Release, 183, 51 (2014).

    Article  CAS  Google Scholar 

  22. J. Lee and Y. Cheng, J. Controlled Release, 111, 185 (2006).

    Article  CAS  Google Scholar 

  23. V. Braig, C. Konnerth, W. Peukert and G. Lee, Int. J. Pharm., 554, 54 (2019).

    Article  CAS  Google Scholar 

  24. N.-O. Chung, M. K. Lee and J. Lee, Int. J. Pharm., 437, 42 (2012).

    Article  CAS  Google Scholar 

  25. D. G. Lim, J. H. Jung, H. W. Ko, E. Kang and S. H. Jeong, ACS Appl. Mater. Interfaces, 8, 23558 (2016).

    Article  CAS  Google Scholar 

  26. M. K. Lee, M. Y. Kim, S. Kim and J. Lee, J. Pharm. Sci., 98, 4808 (2009).

    Article  CAS  Google Scholar 

  27. S. Kim and J. Lee, Int. J. Pharm., 397, 218 (2010).

    Article  CAS  Google Scholar 

  28. W. W. L. Chin, J. Parmentier, M. Widzinski, E. H. Tan and R. Gokhale, J. Pharm. Sci., 103, 2980 (2014).

    Article  CAS  Google Scholar 

  29. S. K. Poornachary, G. Han, J. W. Kwek, P. S. Chow and R. B. Tan, Cryst. Growth Des., 16, 749 (2016).

    Article  CAS  Google Scholar 

  30. V. López-Mejías, J. L. Knight, C. L. Brooks III and A. J. Matzger, Langmuir, 27, 7575 (2011).

    Article  Google Scholar 

  31. D. S. Frank and A. J. Matzger, Cryst. Growth Des., 17, 4056 (2017).

    Article  CAS  Google Scholar 

  32. M. K. Lee, H. Lee, I. W. Kim and J. Lee, Die Pharmazie, 66, 766 (2011).

    CAS  PubMed  Google Scholar 

  33. H. Choi, H. Lee, M. K. Lee and J. Lee, J. Pharm. Sci., 101, 2941 (2012).

    Article  CAS  Google Scholar 

  34. R. H. Li, D. H. Altreuter and F. T. Gentile, Biotechnol. Bioeng., 50, 365 (1996).

    Article  CAS  Google Scholar 

  35. E. Favre, M. Leonard, A. Laurent and E. Dellacherie, Colloids Surf., A: Physicochem. Eng. Aspects, 194, 197 (2001).

    Article  CAS  Google Scholar 

  36. R. Q. Song and H. Cölfen, Adv. Mater., 22, 1301 (2010).

    Article  CAS  Google Scholar 

  37. H. Lee and J. Lee, J. Ind. Eng. Chem., 21, 1183 (2015).

    Article  CAS  Google Scholar 

  38. H. Takeuchi, T. Yasuji, H. Yamamoto and Y. Kawashima, Pharm. Dev. Technol., 5, 355 (2000).

    Article  CAS  Google Scholar 

  39. P. Melnikov, P. P. Corbi, A. Cuin, M. Cavicchioli and W. R. Guimarães, J. Pharm. Sci., 92, 2140 (2003).

    Article  CAS  Google Scholar 

  40. M. Xia, S.-M. Kang, G.-W. Lee, Y. S. Huh and B. J. Park, J. Ind. Eng. Chem., 73, 306 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the South Korean National Research Foundation and Ministry of Science, ICT and Future Planning (ERC 2014R1A5A1009799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwi Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Kang, J.W. & Lee, J. In-situ crystallization of sildenafil during ionic crosslinking of alginate granules. Korean J. Chem. Eng. 37, 1726–1731 (2020). https://doi.org/10.1007/s11814-020-0580-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0580-8

Keywords

Navigation