Skip to main content
Log in

Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, heat transfer and pressure drop characteristics in flow through a tube with inline and staggered baffles having angular cut at the edge are reported for various operating conditions. An experimental test rig is designed and developed to investigate heat transfer and pressure drop behavior for different conditions. Effects of different geometrical parameters, i.e., pitch ratios, baffle arrangement and cutting angle of baffles on heat transfer rate and pressure drop characteristics, have been investigated for turbulent flow regime. Reynolds number ranging from 10,000 to 52,000 has been considered in the present study. The maximum heat transfer rate has been observed for staggered arrangement with pitch ratio of 0.1 and cutting angle of 60°, while minimum heat transfer rate has been observed for inline arrangement with pitch ratio of 0.2 and cutting angle of 30°. Empirical correlations for Nusselt number and friction factor have been developed as a function of geometrical and flow parameters. The deviations between experimental and predicted values of Nusselt number and friction factor for staggered arrangements have been observed as ± 10%, ± 4%, respectively, whereas for inline arrangement the deviation has been observed as ± 12%, ± 5%, respectively. Results from empirical correlations are well agreed with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Tube inner wall surface area (m2)

b :

Breadth of baffle (m)

c p :

Mean isobaric heat capacity (J kg−1 K−1)

d :

Perforation depth (m)

D :

Inner diameter of test tube (m)

D’ :

Diameter defining baffle shape (m)

E :

Eccentricity in defining baffle shape (m)

f:

Darcy friction factor

h :

Convective heat transfer coefficient (W m−2 K−1)

H :

Perforation ratio

I :

Current (A)

k :

Fluid thermal conductivity (W mK−1)

L :

Tube length (m)

m :

Mass flow rate (kg s−1)

Nu:

Nusselt number

Δp :

Pressure drop (N m−2)

P :

Pitch ratio

Pr :

Prandtl number

R w :

Wall thermal resistance (K W−1)

q w :

Wall heat flux

Re:

Reynolds number based on D and V

T :

Temperature (K)

t :

Baffle thickness (m)

V :

Bulk velocity for plain tube (m s−1); voltage (V)

W :

Height of baffle (m)

y :

Pitch (m)

ρ :

Fluid density (kg m−3)

α :

Cut angle (°)

b:

Bulk

e:

Electric

i:

Inlet

o:

Outlet

ow:

Outer wall

w:

Inner wall

0:

Plain tube (turbulator free)

SACB:

Staggered angular cut baffle

IACB:

Inline angular cut baffle

References

  1. Kabeel AE, El-Said EMS. A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: Part II. Experimental investigation. Desalination. 2014;341:50–60.

    CAS  Google Scholar 

  2. El-Said EMS, Kabeel AE, Abdulaziz M. Theoretical study on hybrid desalination system coupled with nano-fluid solar heater for arid states. Desalination. 2016;386:84–98.

    CAS  Google Scholar 

  3. Kabeel AE, El-Said EMS. Experimental study on a modified solar power driven hybrid desalination system. Desalination. 2018;443:1–10.

    CAS  Google Scholar 

  4. El-Said EMS, Abdulaziz M, Awad MM. A numerical investigation on heat transfer enhancement and the flow characteristics in a new type plate heat exchanger using helical flow duct. Cogent Eng. 2017;4:1396638.

    Google Scholar 

  5. El-Said EMS, Abdulaziz M, Awad MM. Thermodynamic performance evaluation for helical plate heat exchanger based on second law analysis. Proc Roman Acad Ser A. 2018;19:237–42.

    Google Scholar 

  6. El-Said EMS, Abou Alsood MM. Experimental investigation of air injection effect on the performance of horizontal shell and multi-tube heat exchanger with baffles. Appl Therm Eng. 2018;134:238–47.

    Google Scholar 

  7. El-Said EMS, Abou Al-Sood MM. Shell and tube heat exchanger with new segmental baffles configurations: a comparative experimental investigation. Appl Therm Eng. 2019;150:803–10.

    Google Scholar 

  8. Saeedan M, Solaimany Nazar AR, Abbasi Y, Karimi R. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube. Appl Therm Eng. 2016;100:721–9.

    CAS  Google Scholar 

  9. Liu J, Qian C. Comparison of the fluid flow and heat transfer in shell-and-tube heat exchangers with different baffles and tubes: simulation and experimental studies. Asia-Pac J Chem Eng. 2016;11:1051–9.

    CAS  Google Scholar 

  10. Sahel D, Ameur H, Benzeguir R, Kamla Y. Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng. 2016;101:156–64.

    Google Scholar 

  11. Qiu Y, Li M-J, Wang W-Q, Du B-C, Wang K. An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power. Energy. 2018;156:63–72.

    Google Scholar 

  12. Wang S, Jiang X, Wang R, Wang X, Yang S, Zhao J, Liu Y. Numerical simulation of flow behavior of particles in a liquid-solid stirred vessel with baffles. Adv Powder Technol. 2017;28:1611–24.

    Google Scholar 

  13. Anil K, Man-Hoe K. Thermal hydraulic performance in a solar air heater channel with multi V-type perforated baffles. Energies. 2016;9:564.

    Google Scholar 

  14. Gajusingh ST, Shaikh N, Siddiqui K. Influence of a rectangular baffle on the downstream flow structure. Exp Therm Fluid Sci. 2010;34:590–602.

    Google Scholar 

  15. Kumar R, Chauhan R, Sethi M, Kumar A. Experimental study and correlation development for Nusselt number and friction factor for discretized broken V-pattern baffle solar air channel. Exp Therm Fluid Sci. 2017;81:56–75.

    Google Scholar 

  16. Momin AME, Saini JS, Solanki SC. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int J Heat Mass Transf. 2002;45:3383–96.

    Google Scholar 

  17. Han JC, Zhang YM, Lee CP. Augmented heat transfer in square channels with parallel, crossed and V-shaped angled ribs. ASME J Heat Transf. 1991;113:590–6.

    CAS  Google Scholar 

  18. Han JC, Zhang YM, Lee CP. Influence of surface heat flux ratio on heat transfer augmentation in square channels with parallel, crossed, and V-shaped angled ribs. ASME J Turbomach. 1992;114:872–80.

    Google Scholar 

  19. Kumar A, Kim M-H. Thermal hydraulic performance in a solar air heater channel with multi V-Type perforated baffles. Energies. 2016;9:564.

    Google Scholar 

  20. Alfarawi S, Abdel-Moneim SA, Bodalal A. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs. Int J Therm Sci. 2017;118:123–38.

    Google Scholar 

  21. Kwankaomeng Sutapat, Promvonge Pongjet. Numerical prediction on laminar heat transfer in square duct with 30° angled baffle on one wall. Int Commun Heat Mass Transf. 2010;37:857–66.

    Google Scholar 

  22. Salem MR, Althafeeri MK, Elshazly KM, Higazy MG, Abdrabbo MF. Experimental investigation on the thermal performance of a double pipe heat exchanger with segmental perforated baffles. Int J Therm Sci. 2017;122:39–52.

    Google Scholar 

  23. Ary BKP, Lee MS, Ahn SW, Lee DH. The effect of the inclined perforated baffle on heat transfer and flow patterns in the channel. Int Commun Heat Mass Transf. 2012;39:1578–83.

    Google Scholar 

  24. Lee CK, Abdel-Moneim SA. Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs. Int Commun heat mass Transf. 2001;28(2):161–70.

    CAS  Google Scholar 

  25. Gradeck M, Hoareau B, Lebouche M. Local analysis of heat transfer inside corrugated channel. Int J Heat Mass Transf. 2005;48(10):1909–15.

    Google Scholar 

  26. Vazquez MS, Rodríguez WV, Issa R. Effects of ridged walls on the heat transfer in a heated square duct. Int J Heat Mass Transf. 2005;48(10):2050–63.

    Google Scholar 

  27. Sriromreun P, Thianpong C, Promvonge P. Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles. Int Commun Heat Mass Transf. 2012;39:945–52.

    Google Scholar 

  28. Ko K-H, Anand NK. Use of porous baffles to enhance heat transfer in a rectangular channel. Int J Heat Mass Transf. 2003;46:4191–9.

    Google Scholar 

  29. Nuntadusit C, Piya I, Wae-hayee M, Eiamsa-ard S. Heat transfer characteristics in a channel fitted with zigzag-cut baffles. J Mech Sci Technol. 2015;29:2547–54.

    Google Scholar 

  30. Gajusingh ST, Shaikh N, Siddiqui K. Influence of a rectangular baffle on the downstream flow structure. Exp Therm Fluid Sci. 2010;34:590–602.

    Google Scholar 

  31. Roetzel W, Lee DW. Effect of baffle/shell leakage flow on heat transfer in shell-and-tube heat exchangers. Exp Therm Fluid Sci. 1994;8:10–20.

    CAS  Google Scholar 

  32. Roetzel W, Lee D. Effect of baffle/shell leakage flow on heat transfer in shell-and-tube heat exchangers. Exp Therm Fluid Sci. 1993;7:131.

    Google Scholar 

  33. Alam T, Saini RP, Saini JS. Experimental investigation of thermohydraulic performance of a rectangular solar air heater duct equipped with V-shaped perforated blocks. Adv Mech Eng. 2014;6:948313.

    Google Scholar 

  34. Singh SK, Kumar M, Kumar A, Gautam A, Chamoli S. Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts. Appl Therm Eng. 2018;130:230–41.

    Google Scholar 

  35. Bhattacharyya S, Chattopadhyay H, Benim AC. 3D CFD Simulation on heat transfer enhancement in turbulent channel flow with twisted tape inserts. Prog Comput Fluid Dyn Int J. 2017;17:193–7.

    Google Scholar 

  36. Saha S, Bhattacharyya S, Dayanidhi G. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with helical screw-tape inserts. Heat Transf Res. 2012;43:207–27.

    Google Scholar 

  37. Bhattacharyya S, Benim AC, Chattopadhyay H, Banerjee A. Experimental investigation of heat transfer performance of corrugated tube with spring tape inserts. Exp Heat Transf. 2018;32:1–15.

    Google Scholar 

  38. Bhattacharyya S, Chattopadhyay H, Guin A, Benim AC. Investigation of inclined turbulators for heat transfer enhancement in a solar air heater. Heat Transf Eng. 2018;40:1–10.

    CAS  Google Scholar 

  39. S. Bhattacharyya, A.C. Benim, H. Chattopadhyay, A. Banerjee, Experimental and numerical analysis of forced convection in a twisted tube (accepted). J Therm Sci (http://thermalscience.vinca.rs/). (2019).

  40. Bhattacharyya S, Chattopadhyay H, Benim A. Numerical investigation on heat transfer in a circular tube with inclined ribs. Prog Comput Fluid Dyn Int J. 2017;17:390–6.

    Google Scholar 

  41. Bhattacharyya S, Chattopadhyay H, Banerjee A, Benim AC. Heat transfer and flow field in a circular twisted channel. MATEC Web Conf. 2018;240:01005.

    CAS  Google Scholar 

  42. Bhattacharyya S. Experimental study on effect of heat transfer enhancement of heat exchanger tube inserted with short length spring tapes. Iran J Sci Technol Trans Mech Eng. 2018. https://doi.org/10.1007/s40997-018-0251-0.

    Article  Google Scholar 

  43. Saha S, Saha SK. Enhancement of heat transfer of laminar flow through a circular tube having integral helical rib roughness and fitted with wavy strip inserts. Exp Therm Fluid Sci. 2013;50:107–13.

    Google Scholar 

  44. Saha SK. Thermohydraulics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci. 2012;38:201–9.

    Google Scholar 

  45. Saha SK. Thermohydraulics of laminar flow through a circular tube having integral helical corrugations and fitted with helical screw-tape insert. Chem Eng Commun. 2013;200:418–36.

    CAS  Google Scholar 

  46. Saha SK, Bhattacharyya S, Pal PK. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape. Exp Therm Fluid Sci. 2012;41:121–9.

    Google Scholar 

  47. Meyer JP, Everts M. Single-phase mixed convection of developing and fully developed flow in smooth horizontal circular tubes in the laminar and transitional flow regimes. Int J Heat Mass Transf. 2018;117:1251–73.

    Google Scholar 

  48. Bhattacharyya S, Chattopadhyay H, Haldar A. Design of twisted tape turbulator at different entrance angle for heat transfer enhancement in a solar heater. Beni-Suef Univ J Basic Appl Sci. 2018;7:118–26.

    Google Scholar 

  49. Bhattacharyya S, Dey K, Hore R, Banerjee A, Paul AR. Computational study on thermal energy around diamond shaped cylinder at varying inlet turbulent intensity. Energy Proc. 2019;160:285–92.

    Google Scholar 

  50. Bhattacharyya S, Chattopadhyay H, Saha SK. Numerical study on heat transfer enhancement of laminar flow through a circular tube with artificial rib roughness. J Refrig Air Cond Heat Vent. 2014;1:14–9.

    Google Scholar 

  51. Bhattacharyya S, Saha S, Saha SK. Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci. 2013;44:727–35.

    Google Scholar 

  52. Shah RK, Sekulić DP. Fundamentals of heat exchanger design. New York: Wiley; 2003.

    Google Scholar 

  53. Wang W, Zhang Y, Li B, Li Y. Numerical investigation of tube-side fully developed turbulent flow and heat transfer in outward corrugated tubes. Int J Heat Mass Transf. 2018;116:115–26.

    Google Scholar 

  54. Chang SW, Yang TL, Liou JS. Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Therm Fluid Sci. 2007;32:489–501.

    CAS  Google Scholar 

  55. Promvonge P. Thermal performance in circular tube fitted with coiled square wires. Energy Convers Manag. 2008;49:980–7.

    Google Scholar 

  56. Tang X, Dai X, Zhu D. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int J Heat Mass Transf. 2015;90:523–41.

    Google Scholar 

  57. Mohammed HA, Abbas AK, Sheriff JM. Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes. Int Commun Heat Mass Transf. 2013;44:116–26.

    Google Scholar 

  58. Eiamsa-ard S, Rattanawong S, Promvonge P. Turbulent convection in round tube equipped with propeller type swirl generators. Int Commun Heat Mass Transf. 2009;36:357–64.

    CAS  Google Scholar 

  59. Bhuiya MMK, Chowdhury MSU, Ahamed JU, Khan MJH, Sarkar MAR, Kalam MA, Masjuki HH, Shahabuddin M. Heat transfer performance for turbulent flow through a tube using double helical tape inserts. Int Commun Heat Mass Transf. 2012;39:818–25.

    Google Scholar 

  60. Suri ARS, Kumar A, Maithani R. Experimental determination of enhancement of heat transfer in a multiple square perforated twisted tape inserts heat exchanger tube. Exp Heat Transf. 2018;31:85–105.

    CAS  Google Scholar 

  61. Kumar A, Kumar R, Chauhan R, Sethi M, Kumari A, Verma N, Nadda R. Single-phase thermal and hydraulic performance analysis of a V-pattern dimpled obstacles air passage. Exp Heat Transf. 2017;30:393–426.

    CAS  Google Scholar 

  62. Chang SW, Chen TW, Chen YW. Detailed heat transfer and friction factor measurements for square channel enhanced by plate insert with inclined baffles and perforated slots. Appl Therm Eng. 2019;159:113856.

    Google Scholar 

  63. Eiamsa-ard S, Ruengpayungsak K, Thianpong C, Pimsarn M, Chuwattanakul V. Parametric study on thermal enhancement and flow characteristics in a heat exchanger tube installed with protruded baffle bundles. Int J Therm Sci. 2019;145:106016.

    Google Scholar 

  64. Sahel D, Ameur H, Benzeguir R, Kaml Y. Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng. 2016;101:156–64.

    Google Scholar 

  65. Nanan K, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S. Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators. Appl Therm Eng. 2017;114:130–47.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Sam Casting (Grant No. 01/2014), University of Pretoria, MCKV Institute of Engineering and Jadavpur University, India, for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suvanjan Bhattacharyya or Ali Cemal Benim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

Here uncertainty analysis of friction factor and Nusselt number calculation has been presented.

Friction factor

$$f = \frac{1}{2}\left\{ {\frac{\Delta P}{{L_{{\text{p}}} }}} \right\}\left\{ {\frac{{\rho D^{3} }}{{\text{Re}^{2} \mu^{2} }}} \right\}$$
(20)
$$\frac{\Delta f}{f} = \frac{1}{f}\left[ {\left\{ {\frac{\partial f}{{\partial \left( {\Delta P} \right)}}\Delta \left( {\Delta P} \right)} \right\}^{2} + \left\{ {\frac{\partial f}{{\partial L_{\text{p}} }}\Delta L_{\text{p}} } \right\}^{2} + \left\{ {\frac{\partial f}{\partial D}\Delta D} \right\}^{2} + \left\{ {\frac{\partial f}{{\partial \left( {\text{Re} } \right)}}\Delta \text{Re} } \right\}^{2} } \right]^{0.5}$$
(21)

or

$$\frac{\Delta f}{f} = \left[ {\left\{ {\frac{{\Delta \left( {\Delta P} \right)}}{\Delta P}} \right\}^{2} + \left\{ {\frac{{\Delta L_{\text{p}} }}{{L_{\text{p}} }}} \right\}^{2} + \left\{ {\frac{3\Delta D}{D}} \right\}^{2} + \left\{ {\frac{{2\Delta \text{Re} }}{\text{Re}}} \right\}^{2} } \right]^{0.5}$$
(22)
$$\Delta P \propto h$$
(23)
$$\therefore \frac{{\Delta \left( {\Delta P} \right)}}{\Delta P} = \frac{\Delta h}{h}$$
(24)
$$\text{Re} = \frac{{4\dot{m}}}{\pi D\mu }$$
(25)
$$\frac{{\Delta \text{Re} }}{{\text{Re}}} = \left[ {\left( {\frac{{\Delta \dot{m}}}{{\dot{m}}}} \right)^{2} + \left( {\frac{\Delta D}{D}} \right)^{2} } \right]^{0.5}$$
(26)

The uncertainty in friction factor has been calculated from the above equations.

Nusselt number

$${\text{Nu}} = \frac{hD}{k}$$
(27)
$$\frac{{\Delta {\text{Nu}}}}{{\text{Nu}}} = \frac{1}{{\text{Nu}}}\left[ {\left\{ {\frac{\partial }{\partial h}({\text{Nu}})\Delta h} \right\}^{2} + \left\{ {\frac{\partial }{\partial D}\left( {\text{Nu}} \right)\Delta D} \right\}^{2} + \left\{ {\frac{\partial }{\partial k}\left( {\text{Nu}} \right)\Delta k} \right\}^{2} } \right]^{0.5}$$

or

$$\frac{{\Delta {\text{Nu}}}}{{\text{Nu}}} = \left\{ {\left( {\frac{\Delta h}{h}} \right)^{2} + \left( {\frac{\Delta D}{D}} \right)^{2} } \right\}^{0.5}$$
(28)
$$h = \frac{{q^{{\prime \prime }} }}{{T_{\text{wi}} - T_{\text{b}} }}$$
(29)
$$\frac{\Delta h}{h} = \frac{1}{h}\left[ {\left\{ {\frac{\partial h}{{\partial q^{{\prime \prime }} }}\Delta q^{{\prime \prime }} } \right\}^{2} + \left\{ {\frac{\partial h}{{\partial T_{\text{wi}} }}{\Delta} T_{\text{wi}} } \right\}^{2} + \left\{ {\frac{\partial h}{{\partial T_{\text{b}} }}{\Delta} T_{\text{b}} } \right\}^{2} } \right]^{0.5}$$
$$\frac{\Delta h}{h} = \left[ {\left\{ {\frac{{\Delta q^{{\prime \prime }} }}{{q^{{\prime \prime }} }}} \right\}^{2} + \left\{ {\frac{{\Delta {T_{\text{wi}}} }}{{T_{\text{wi}} - T_{\text{b}} }}} \right\}^{2} + \left\{ {\frac{{{\Delta} T_{\text{b}} }}{{T_{\text{wi}} - T_{\text{b}} }}} \right\}^{2} } \right]^{0.5}$$
(30)
$$q^{{\prime \prime }} = \frac{0.5}{{\pi DL_{\text{h}} }}\left[ {\left( {V^{2} /R} \right) + \dot{m}C_{\text{p}} \left( {T_{\text{bo}} - T_{\text{bi}} } \right)} \right]$$
(31)
$$\frac{{\Delta q^{{\prime \prime }} }}{{q^{{\prime \prime }} }} = \frac{1}{{q^{{\prime \prime }} }}\left[ \begin{array}{l} \left\{ {\frac{\partial }{\partial R}\left( {q^{{\prime \prime }} } \right)\Delta R} \right\}^{2} + \left\{ {\frac{\partial }{\partial V}\left( {q^{{\prime \prime }} } \right)\Delta V} \right\}^{2} + \left\{ {\frac{\partial }{{\partial \dot{m}}}\left( {q^{{\prime \prime }} } \right)\Delta \dot{m}} \right\}^{2} + \left\{ {\frac{\partial }{{\partial T_{\text{bo}} }}\left( {q^{{\prime \prime }} } \right)\Delta {T_{\text{bo}}} } \right\}^{2} \hfill \\ + \left\{ {\frac{\partial }{{\partial T_{\text{bi}} }}\left( {q^{{\prime \prime }} } \right){\Delta} T_{\text{bi}} } \right\}^{2} + \left\{ {\frac{\partial }{\partial D}\left( {q^{{\prime \prime }} } \right)\Delta D} \right\}^{2} + \left\{ {\frac{\partial }{{\partial L_{\text{h}} }}\left( {q^{{\prime \prime }} } \right)\Delta L_{\text{h}} } \right\}^{2} \hfill \\ \end{array} \right]^{0.5}$$
$$\frac{{\Delta q^{{\prime \prime }} }}{{q^{{\prime \prime }} }} = \left[ \begin{array}{l} \frac{1}{{\left( {1 + \dot{m}C_{\text{p}} R{\Delta} T_{\text{b}} /V^{2} } \right)^{2} }}\left( {\frac{\Delta R}{R}} \right)^{2} + \frac{4}{{\left( {1 + \dot{m}C_{\text{p}} R{\Delta} T_{\text{b}} /V^{2} } \right)^{2} }}\left( {\frac{\Delta V}{V}} \right)^{2} \hfill \\ + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{\text{p}} {\Delta} T_{\text{b}} }}} \right)^{2} }}\left( {\frac{{\Delta \dot{m}}}{{\dot{m}}}} \right)^{2} + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{\text{p}} {\Delta} T_{\text{b}} }}} \right)^{2} }}\left( {\frac{{{\Delta} T_{\text{bo}} }}{{{\Delta} T_{\text{b}} }}} \right)^{2} \hfill \\ + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{\text{p}} {\Delta} T_{\text{b}} }}} \right)^{2} }}\left( {\frac{{{\Delta} T_{\text{bi}} }}{{{\Delta} T_{\text{b}} }}} \right)^{2} + \left( {\frac{\Delta D}{D}} \right)^{2} + \left( {\frac{{\Delta L_{\text{h}} }}{{L_{\text{h}} }}} \right)^{2} \hfill \\ \end{array} \right]^{0.5}$$
(32)

where \({\Delta} T_{\text{b}} = T_{\text{bo}} - T_{\text{bi}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Benim, A.C., Pathak, M. et al. Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime. J Therm Anal Calorim 140, 1519–1536 (2020). https://doi.org/10.1007/s10973-019-09094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09094-8

Keywords

Navigation