Skip to main content

Advertisement

Log in

The antimetastatic activity of orlistat is accompanied by an antitumoral immune response in mouse melanoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Fatty acid synthase (FASN), the multifunctional enzyme responsible for endogenous fatty acid synthesis, is highly expressed and associated with poor prognosis in several human cancers, including melanoma. Our group has previously shown that pharmacological inhibition of FASN with orlistat decreases proliferation, promotes apoptosis, and reduces the metastatic spread of B16-F10 cells in experimental models of melanoma. While most of the orlistat antitumor properties seem to be closely related to direct effects on malignant cells, its impact on the host immune system is still unknown.

Methods

The effects of orlistat on the phenotype and activation status of infiltrating leukocytes in primary tumors and metastatic lymph nodes were assessed using a model of spontaneous melanoma metastasis (B16-F10 cells/C57BL/6 mice). Cells from the primary tumors and lymph nodes were mechanically dissociated and immune cells phenotyped by flow cytometry. The expression of IL-12p35, IL-12p40, and inducible nitric oxide synthase (iNOS) was analyzed by qRT-PCR and production of nitrite (NO2) evaluated in serum samples with the Griess method.

Results

Orlistat-treated mice exhibited a 25% reduction in the number of mediastinal lymph node metastases (mean 3.96 ± 0.78, 95% CI 3.63–4.28) compared to the controls (mean 5.7 ± 1.72; 95% CI 5.01–6.43). The drug elicited an antitumor immune response against experimental melanomas by increasing maturation of intratumoral dendritic cells (DC), stimulating the expression of cytotoxicity markers in CD8 T lymphocytes and natural killer (NK) cells, as well as reducing regulatory T cells (Tregs). Moreover, the orlistat-treatment increased serum levels of nitric oxide (NO) concentrations.

Conclusion

Taken together, these findings suggest that orlistat supports an antitumor response against experimental melanomas by increasing CD80/CD81-positive and IL-12-positive DC populations, granzyme b/NKG2D-positive NK populations, and perforin/granzyme b-positive CD8 T lymphocytes as well as reducing Tregs counts within experimental melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16:5–24. https://doi.org/10.1634/theoncologist.2010-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finn L, Markovic SN, Joseph RW (2012) Therapy for metastatic melanoma: the past, present, and future. BMC Med 10:23. https://doi.org/10.1186/1741-7015-10-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luke JJ, Flaherty KT, Ribas A, Long GV (2017) Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 14:463–482. https://doi.org/10.1038/nrclinonc.2017.43

    Article  CAS  PubMed  Google Scholar 

  4. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777. https://doi.org/10.1038/nrc2222

    Article  CAS  PubMed  Google Scholar 

  5. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208

    Article  CAS  Google Scholar 

  6. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S et al (2000) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88:176–179

    Article  CAS  Google Scholar 

  7. Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G et al (2009) Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 101:519–532. https://doi.org/10.1093/jnci/djp030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pandey PR, Xing F, Sharma S, Watabe M, Pai SK, Iiizumi-Gairani M et al (2013) Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene 32:5111–5122. https://doi.org/10.1038/onc.2012.519

    Article  CAS  PubMed  Google Scholar 

  9. Kapur P, Rakheja D, Roy LC, Hoang MP (2005) Fatty acid synthase expression in cutaneous melanocytic neoplasms. Mod Pathol 18:1107–1112. https://doi.org/10.1038/modpathol.3800395

    Article  CAS  PubMed  Google Scholar 

  10. de Andrade BAB, León JE, Carlos R, Delgado-Azañero W, Mosqueda-Taylor A, Graner E et al (2011) Expression of fatty acid synthase (FASN) in oral nevi and melanoma. Oral Dis 17:808–812. https://doi.org/10.1111/j.1601-0825.2011.01841.x

    Article  PubMed  Google Scholar 

  11. Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP (1996) Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56:1189–1193

    CAS  PubMed  Google Scholar 

  12. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58:4611–4615

    CAS  PubMed  Google Scholar 

  13. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  CAS  Google Scholar 

  14. Menendez JA, Vellon L, Oza BP, Lupu R (2005) Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression. J Cell Biochem 94:857–863. https://doi.org/10.1002/jcb.20367

    Article  CAS  PubMed  Google Scholar 

  15. Carvalho MA, Zecchin KG, Seguin F, Bastos DC, Agostini M, Rangel ALCA et al (2008) Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int J Cancer 123:2557–2565. https://doi.org/10.1002/ijc.23835

    Article  CAS  PubMed  Google Scholar 

  16. Agostini M, Almeida LY, Bastos DC, Ortega RM, Moreira FS, Seguin F et al (2014) The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol Cancer Ther 13:585–595. https://doi.org/10.1158/1535-7163.MCT-12-1136

    Article  CAS  PubMed  Google Scholar 

  17. Bastos DC, Paupert J, Maillard C, Seguin F, Carvalho MA, Agostini M et al (2017) Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model. Lab Invest 97:194–206. https://doi.org/10.1038/labinvest.2016.125

    Article  CAS  PubMed  Google Scholar 

  18. Zecchin KG, Alberici LC, Riccio MF, Eberlin MN, Vercesi AE, Graner E et al (2011) Visualizing inhibition of fatty acid synthase through mass spectrometric analysis of mitochondria from melanoma cells. Rapid Commun Mass Spectrom 25:449–452. https://doi.org/10.1002/rcm.4875

    Article  CAS  PubMed  Google Scholar 

  19. Zecchin KG, Rossato FA, Raposo HF, Melo DR, Alberici LC, Oliveira HCF et al (2011) Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis. Lab Invest 91:232–240. https://doi.org/10.1038/labinvest.2010.157

    Article  CAS  PubMed  Google Scholar 

  20. Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G et al (2008) Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48:1396–1403. https://doi.org/10.1002/hep.22508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oslob JD, Johnson RJ, Cai H, Feng SQ, Hu L, Kosaka Y et al (2013) Imidazopyridine-based fatty acid synthase inhibitors that show anti-HCV activity and in vivo target modulation. ACS Med Chem Lett 4:113–117. https://doi.org/10.1021/ml300335r

    Article  CAS  PubMed  Google Scholar 

  22. Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M et al (2015) Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2:808–824. https://doi.org/10.1016/j.ebiom.2015.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heuer TS, Ventura R, Mordec K, Lai J, Fridlib M, Buckley D et al (2017) FASN inhibition and taxane treatment combine to enhance anti-tumor efficacy in diverse xenograft tumor models through disruption of tubulin palmitoylation and microtubule organization and FASN inhibition-mediated effects on oncogenic signaling and gene expression. EBioMedicine 16:51–62. https://doi.org/10.1016/j.ebiom.2016.12.012

    Article  PubMed  Google Scholar 

  24. Alwarawrah Y, Hughes P, Loiselle D, Carlson DA, Darr DB, Jordan JL et al (2016) Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer. Cell Chem Biol 23:678–688. https://doi.org/10.1016/j.chembiol.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brenner AJ, Falchook G, Patel M, Infante JR, Arkenau H-T, Dean EM, Borazanci E, Lopez JS, Moore K, Schmid P, Frankel AE, Jones S, McCulloch W, Kemble G, Grimmer KBH (2017) Heavily pre-treated breast cancer patients show promising responses in the first in human study of the first-In-class fatty acid synthase (FASN) inhibitor, TVB-2640 in combination with paclitaxel. In: Cancer research abstract proceedings of the 2016 San antonio breast cancer symposium 2016 Dec 6–10; San Antonio, TX Philadelphia AACR, vol 77; 2017, pp P6-11-09–P16-11-09

  26. Bodey B, Bodey B, Siegel SE, Luck JV, Kaiser HE (2017) Immunophenotypic characterization of human primary and metastatic melanoma infiltrating leukocytes. Anticancer Res 16:3439–3446

    Google Scholar 

  27. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT et al (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72:1070–1080. https://doi.org/10.1158/0008-5472.CAN-11-3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knowles LM, Axelrod F, Browne CD, Smith JW (2004) A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J Biol Chem 279:30540–30545. https://doi.org/10.1074/jbc.M405061200

    Article  CAS  PubMed  Google Scholar 

  29. Prophet EB, Mills B, Arrington JB et al (1992) Laboratory methods in histotechnology. In: Johnson FB (ed) Lipids. American Registry of Pathology, Washington, DC, p 177

    Google Scholar 

  30. Lutz MB, Kukutsch N, Ogilvie AL, Rössner S, Koch F, Romani N et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92

    Article  CAS  Google Scholar 

  31. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  CAS  Google Scholar 

  32. Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP et al (2012) The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16–F10 melanomas. Br J Cancer 107:977–987. https://doi.org/10.1038/bjc.2012.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fidler IJ, Nicolson GL (1976) Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57:1199–1202

    Article  CAS  Google Scholar 

  34. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R et al (2006) Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 203:1859–1865. https://doi.org/10.1084/jem.20052136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneno R, Shurin GV, Tourkova IL, Shurin MR (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 7:58. https://doi.org/10.1186/1479-5876-7-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Ashe S, Brady WA, Hellström I, Hellström KE, Ledbetter JA et al (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    Article  CAS  Google Scholar 

  37. Imai T, Yoshie O (1993) C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 151:6470–6481

    CAS  PubMed  Google Scholar 

  38. Rocha-Perugini V, Zamai M, González-Granado JM, Barreiro O, Tejera E, Yañez-Mó M et al (2013) CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol 33:3644–3658. https://doi.org/10.1128/MCB.00302-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X et al (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531:651–655. https://doi.org/10.1038/nature17412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW (2012) Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J Exp Med 209:2423–2439. https://doi.org/10.1084/jem.20120790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903

    Article  CAS  Google Scholar 

  42. Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM (2008) IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 181:8576–8584

    Article  CAS  Google Scholar 

  43. Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, Charrier S et al (2004) NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104:3267–3275. https://doi.org/10.1182/blood-2004-01-0380

    Article  CAS  PubMed  Google Scholar 

  44. De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27:1229–1235. https://doi.org/10.1002/eji.1830270526

    Article  PubMed  Google Scholar 

  45. Smyth MJ, Teng MWL, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4+ CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587

    Article  CAS  Google Scholar 

  46. Rehman A, Hemmert KC, Ochi A, Henning JR, Barilla R, Quesada JP et al (2019) Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol. https://doi.org/10.4049/jimmunol.1202312

    Article  Google Scholar 

  47. Carroll RG, Zasłona Z, Galván-peña S, Koppe EL, Sévin DC, Angiari S et al (2018) An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage. J Biol Chem 293:5509–5521. https://doi.org/10.1074/jbc.RA118.001921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho H-I, Antonia S et al (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124. https://doi.org/10.1172/JCI40269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF et al (2012) Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 18:1386–1394. https://doi.org/10.1158/1078-0432.CCR-11-2479

    Article  CAS  PubMed  Google Scholar 

  50. Palermo B, Del Bello D, Sottini A, Serana F, Ghidini C, Gualtieri N et al (2010) Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-a-specific, tumor-reactive CTL in melanoma patients. Cancer Res 70:7084–7092. https://doi.org/10.1158/0008-5472.CAN-10-1326

    Article  CAS  PubMed  Google Scholar 

  51. Xie K, Fidler IJ (1998) Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev 17:55–75

    Article  CAS  Google Scholar 

  52. Houghton AM (2010) The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle 9:1732–1737. https://doi.org/10.4161/cc.9.9.11297

    Article  CAS  PubMed  Google Scholar 

  53. Sanders AM, Stehle JR, Blanks MJ, Riedlinger G, Kim-Shapiro JW, Monjazeb AM et al (2010) Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements. BMC Cancer 10:121. https://doi.org/10.1186/1471-2407-10-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Fabiana Rossetto de Morais (Flow Cytometry Facility, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil) for the help with flow cytometry and data analysis. This work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2008/57471-7). LYA and FSM were supported by FAPESP fellowships (2012/25160-8 and 2010/52670-1, respectively). DCB was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard Graner.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, L.Y., Mariano, F.S., Bastos, D.C. et al. The antimetastatic activity of orlistat is accompanied by an antitumoral immune response in mouse melanoma. Cancer Chemother Pharmacol 85, 321–330 (2020). https://doi.org/10.1007/s00280-019-04010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-04010-1

Keywords

Navigation