Skip to main content
Log in

Intrinsic protein geometry with application to non-proline cis peptide planes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The shape of a protein can be modeled by the \(\hbox {C}^{\alpha }\) atoms of its backbone, the mathematical description employing the notion of extrinsic geometry of a discrete piecewise linear chain. We advance differential geometry of a natively framed discrete chain to argue the existence of two additional, independent and intrinsic geometric structures, provided by the peptide planes and side chains, respectively. We develop our general methodology within a case study: analysis of the intrinsic geometry of atoms that are located around a non-proline cis peptide plane. We show that the native peptide plane framing allows for revealing of atomic positions anomalies. That way, we identify a number of entries that display such anomalies around their non-proline cis peptide planes within the ultrahigh-resolution structures in PDB. We propose that our approach can be extended into a visual analysis and refinement tool that is applicable even when resolution is limited or data is incomplete, for example when there are atoms missing in an experimental construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. This section is a brief summary intended for reader’s convenience; for detail, see [16].

  2. The notion of the Frenet sphere and its generalisations in the context of protein visualisation have been introduced and analysed in [16, 33, 34].

  3. See, however, the analysis in [21].

References

  1. M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 5 (Perish Inc, Houston, 1979)

    Google Scholar 

  2. R.L. Bishop, There is more than one way to frame a curve. Am. Math. Mon. 82, 246 (1974)

    Article  Google Scholar 

  3. A.J. Hanson, Visualizing Quaternions (Elsevier, London, 2006)

    Google Scholar 

  4. J.B. Kuipers, Quaternions and Rotation Sequences (Princeton University Press, Princeton, 1999)

    Google Scholar 

  5. G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95 (1963)

    Article  CAS  PubMed  Google Scholar 

  6. K. Hinsen, S. Hu, G. Kneller, A.J. Niemi, A comparison of reduced coordinate sets for describing protein structure. J. Chem. Phys. 139, 124115 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. P.G. Mezey, K. Fukui, S. Arimoto, K. Taylor, Polyhedral shapes of functional group distributions in biomolecules and related similarity measures. Int. J. Quant. Chem. 66, 99 (1998)

    Article  CAS  Google Scholar 

  8. P.G. Mezey, K. Fukui, S. Arimoto, Treatment of small deformations of polyhedral shapes of functional group distributions in biomolecules. Int. J. Quant. Chem. 76, 756 (2000)

    Article  CAS  Google Scholar 

  9. C.M. Maggiora, P.G. Mezey, B. Mao, K.C. Chou, A new chiral feature in \(\alpha \)-helical domains of proteins. Biopolymers 30, 211 (1990)

    Article  CAS  Google Scholar 

  10. https://en.wikipedia.org/wiki/List of molecular graphics systems. Accessed 25 July 2018

  11. T.X. Hoang, A. Trovato, F. Seno, J.R. Banavar, A. Maritan, Geometrical model for the native-state folds of proteins. Biophys. Chem. 115, 289 (2005)

    Article  CAS  Google Scholar 

  12. G.A. Arteca, P.G. Mezey, A method for the characterization of foldings in protein ribbon models. J. Mol. Graph. 8, 60 (1990)

    Article  Google Scholar 

  13. A.N. Jha, S. Vishveshwara, Inter-helical interactions in membrane proteins: analysis based on the local backbone geometry and the side chain interactions. J. Biomol. Struct. Dyn. 26, 719 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. G.A. Arteca, O. Tapia, P.G. Mezey, Implementing knot-theoretical characterization methods to analyze the backbone structure of proteins: application to CTF L7/L12 and carboxypeptidase A inhibitor proteins. J. Mol. Graph. 9, 148 (1991)

    Article  CAS  PubMed  Google Scholar 

  15. D. Marenduzzo, C. Micheletti, H. Seyed-allaei, A. Trovato, A. Maritan, Continuum model for polymers with nite thickness. J. Phys. A Math. Gen. 38, L277 (2005)

    Article  CAS  Google Scholar 

  16. S. Hu, M. Lundgren, A.J. Niemi, The discrete frenet frame and curve visualization with applications to folded proteins. Phys. Rev. E 83, 061908 (2011)

    Article  CAS  Google Scholar 

  17. M. Sasai, P.G. Wolynes, Phys. Rev. Lett. 65, 2740 (1990)

    Article  CAS  PubMed  Google Scholar 

  18. A. Davtyan, N.P. Schafer, W. Zheng, C. Clementi, P.G. Wolynes, G.A. Papoian, J. Phys. Chem. B 116, 8494 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Janin, S. Wodak, M. Levitt, B. Maigret, J. Mol. Biol. 125, 357 (1978)

    Article  CAS  PubMed  Google Scholar 

  20. S.C. Lovell, J. Word, J.S. Richardson, D.C. Richardson, The penultimate rotamer library. Proteins Struct. Funct. Bioinform. 40, 389 (2000)

    Article  CAS  Google Scholar 

  21. H. Schrauber, F. Eisenhaber, P. Argos, Rotamers: to be or not to be?: an analysis of amino acid side-chain conformations in globular. J. Mol. Biol. 230, 592 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. R.L. Dunbrack Jr., M. Karplus, Backbone-dependent Rotamer library for proteins application to side-chain prediction. J. Mol. Biol. 230, 543 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. M.V. Shapovalov, R.L. Dunbrack Jr., A smoothed backbone-dependent Rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Peng, A. Chenani, S. Hu, Y. Zhou, A.J. Niemi, A three dimensional visualisation approach to protein heavy-atom structure reconstruction. BMC Struct. Biol. 14, 27 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D.S. Berkholz, C.M. Driggers, M.V. Shapovalov, R.L. Dunbrack, P.A. Karplus, Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites. PNAS 109, 449 (2012)

    Article  PubMed  Google Scholar 

  27. D.E. Stewart, A. Sarkar, J.E. Wampler, Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253 (1990)

    Article  CAS  PubMed  Google Scholar 

  28. A. Jabs, M.S. Weiss, R. Hilgenfeld, Non-proline cis peptide bonds in proteins. J. Mol. Biol. 286, 291 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. C. Dugave, L. Demange, Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 103, 2475 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. W.G. Touw, R.P. Joosten, G. Vriend, Detection of trans-cis flips and peptide-plane flips in protein structures. Acta Crystallogr. D71, 1604 (2015)

    Google Scholar 

  31. B.L. Stoddard, S. Pietrokovski, Breaking up is hard to do. Nat. Struct. Mol. Biol. 5, 3 (1998)

    Article  CAS  Google Scholar 

  32. V. Tugarinov, J. Anglister, Solution Structure of an antibody-bound HIV-1IIIB V3 peptide: a cis proline turn linking two -hairpin strands. J. Biomol. Struct. Dyn. 17, 57 (2000)

    Article  PubMed  Google Scholar 

  33. M. Lundgren, A.J. Niemi, F. Sha, Protein loops, solitons, and side-chain visualization with applications to the left-handed helix region. Phys. Rev. E 85, 061909 (2012)

    Article  CAS  Google Scholar 

  34. M. Lundgren, A.J. Niemi, Correlation between protein secondary structure, backbone bond angles, and side-chain orientations. Phys. Rev. E 86, 021904 (2012)

    Article  CAS  Google Scholar 

  35. http://www.uniprot.org/. Accessed 25 July 2018

  36. J. Dai, A.J. Niemi, J. He, A. Sieradzan, N. Ilieva, Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example. Phys. Rev. E 93, 032409 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. P.G. Mezey, Z. Antal, An alternative to the“Star Path” enhancement of the ADMA linear scaling method for protein modeling. J. Comput. Chem. 38, 1774 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Bulgarian Science Fund (Grant DNTS-CN-01/9/2014), Vetenskapsrådet (Sweden), Carl Trygger’s Stiftelse and Qian Ren Grant at Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Ilieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Dai, J., He, J. et al. Intrinsic protein geometry with application to non-proline cis peptide planes. J Math Chem 57, 263–279 (2019). https://doi.org/10.1007/s10910-018-0949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0949-7

Keywords

Mathematics Subject Classification

Navigation