Skip to main content

Advertisement

Log in

CNTS-Water–Based Nanofluid Over a Stretching Sheet

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This article mainly focuses on the energy transfer with the effects of carbon nanotubes (CNTs) of magnetohydrodynamic (MHD) nanofluids flow past a stretching sheet under thermal radiation and Newtonian heating. Single and multi-wall CNTs are considered in water as convectional based fluid. With the help of similarity transformations, the nonlinear ODEs are obtained from system of PDEs. Closed form analytic solutions are obtained for velocity, temperature, and concentration. These solutions are plotted and discussed for pertinent parameters. The results indicate that temperature of CNTs-water–based nanofluid is higher than CNTs-engine oil (or kerosene). Further, heat transfer rate increases due to suspension of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B 0 :

strength of magnetic field

C :

species concentration

(c p)nf :

nanofluid heat capacity

D f :

mass diffusivity of base fluid

D nf :

nanofluid mass diffusivity

h s :

heat transfer coefficient

k :

permeability

k 1 :

mean absorption coefficient

k f :

thermal conductivity of base fluid

k CNT :

carbon nanotubes thermal conductivity

K nf :

nanofluid thermal conductivity

M :

magnetic parameter

P :

porosity parameter

Pr:

Prandtl number

q r :

radiative heat flux

Sc :

Schmidt number

T :

temperature of the fluid

T :

ambient temperature

α nf :

nanofluid thermal diffusivity

γ :

conjugate parameter for Newtonian heating

μ f :

base fluid dynamic viscosity

μ nf :

nanofluid dynamic viscosity

ρ f :

density of base fluid

ρ CNT :

carbon nanotubes density

ρ nf :

nanofluid density

σ :

Stefan–Boltzmann constant

σ f :

electric conductivity of base fluid

σ CNT :

carbon nanotubes electric conductivity

σ nf :

nanofluid electric conductivity

θ :

dimensionless temperature

Φ :

dimensionless concentration

ϕ :

nanoparticle volume fraction

References

  1. Choi, S. (1995). Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows. In D. A. Siginer & H. P. Wang (Eds.), ASME (Vol. 66, pp. 99–105).

    Google Scholar 

  2. Pak, B. C. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion, 11, 151–170.

    Article  Google Scholar 

  3. Eastman, J. A., Cho, S. U. S., Li, S., Soyez, G., Thompson, L. J., & Dimelfi, R. J. (1999). Novel thermal properties of nanostructured materials. Journal of Metastable and Nanocrystalline Materials, 2, 629–637.

    Article  Google Scholar 

  4. Qiang, L., & Yimin, X. (2002). Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China (Series E), 45, 408–416.

    Google Scholar 

  5. Xie, H., Lee, H., Youn, W., & Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied Physics, 94, 4967–4971.

    Article  Google Scholar 

  6. Ding, Y., Alias, H., Wen, D., & Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49, 240–250.

    Article  Google Scholar 

  7. Shafahi, M., Bianco, V., Vafai, K., & Manca, O. (2010). An investigation of the thermal performance of cylindrical heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 53, 376–383.

    Article  MATH  Google Scholar 

  8. Khan, W. A., Khan, Z. H., & Rahi, M. (2014). Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Applied Nanoscience, 4, 633–641.

    Article  Google Scholar 

  9. Akbar, N. S., Raza, M., & Ellahi, R. (2015). Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. Journal of Magnetism and Magnetic Materials, 381, 405–415.

    Article  Google Scholar 

  10. Khan, W. A., Culham, R., & Haq, R. U. (2015). Heat transfer analysis of MHD water functionalized carbon nanotube flow over a static/moving wedge. Journal of Nanomaterials, 2015, 1–13.

    Article  Google Scholar 

  11. Ebaid, A., Mutairi, F. A., & Khaled, S. M. (2014). Effect of velocity slip boundary condition on the flow and heat transfer of Cu-water and TiO2-water nanofluids in the presence of a magnetic field. Adv. Math. Phys., 2014, 1–9.

    Article  MATH  Google Scholar 

  12. Haroun, N. A., Sibanda, P., Mondal, S., & Motsa, S. S. (2015). On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. Boundary Value Problems, 24, 1–17.

    MathSciNet  MATH  Google Scholar 

  13. Chamkha, A. J., & Ismael, M. A. (2016). Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. Journal of Thermal Science and Engineering Applications, 8, 031009–1–12.

    Article  Google Scholar 

  14. Tayebi, T., Chamkha, A. J., Djezzar, M., & Bouzerzour, A. (2017). Natural convective nanofluid flow in an annular space between confocal elliptic cylinders. Journal of Thermal Science and Engineering Applications, 9, 011010–1-9.

    Google Scholar 

  15. Ghafouri, A., Salari, M. M., & Jozaei, A. F. (2017). Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid. Journal of Applied Mechanics and Technical Physics, 58, 103–115.

    Article  MathSciNet  Google Scholar 

  16. Abro, K. A., Chandio, A. D., Abro, I. A., & Khan, I. (2018). Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-018-7302-z.

  17. Abdelsalam, S. I., & Bhatti, M. M. (2018). The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures, 14(3), 530–548.

    Article  Google Scholar 

  18. Abdelsalam, S. I., & Bhatti, M. M. (2018). The study of non-Newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Advances, 8, 7904–7915.

    Article  Google Scholar 

  19. Qasim, M., Khan, I., & Shafie, S. (2013). Heat and mass diffusion in nanofluids over a moving permeable convective surface. Mathematical Problems in Engineering, 2013, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  20. Anwar, M. I., Khan, I., Hussanan, A., Salleh, M. Z., & Sharidan, S. (2013). Stagnation-point flow of a nanofluid over a nonlinear stretching sheet. World Applied Sciences Journal, 23, 998–1006.

    Google Scholar 

  21. Khan, U., Ahmed, N., Asadullah, M., & Mohyud-Din, S. T. (2015). Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids. Propulsion and Power Research, 4, 40–49.

    Article  Google Scholar 

  22. Hussanan, A., Khan, I., Hashim, H., Mohamed, M. K. A., Ishak, N., Sarif, N. M., & Salleh, M. Z. (2016). Unsteady MHD flow of some nanofluids past an accelerated vertical plate embedded in a porous medium. Jurnal Teknologi, 78, 121–126.

    Google Scholar 

  23. Hussanan, A., Salleh, M. Z., Khan, I., & Shafie, S. (2017). Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil. Journal of Molecular Liquids, 229, 482–488.

    Article  Google Scholar 

  24. Abro, K. A., Hussain, M., & Baig, M. M. (2017). An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. The European Physical Journal Plus, 132, 439–1-10.

    Google Scholar 

  25. Hussanan, A., Salleh, M. Z., & Khan, I. (2018). Microstructure and inertial characteristics of a magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. Journal of Molecular Liquids, 255, 64–75.

    Article  Google Scholar 

  26. Hamad, M. A. A. (2011). Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. International Communications in Heat and Mass Transfer, 38, 487–492.

    Article  Google Scholar 

  27. Loganathan, P., Chand, P. N., & Ganesan, P. (2013). Radiation effects on an unsteady natural convection flow of a nanofluids past an infinite vertical plate. Nano, 8, 1350001–1350010.

    Article  Google Scholar 

  28. Nandkeolyar, R., Das, M., & Pattnayak, H. (2013). Unsteady hydromagnetic radiative flow of a nanofluid past a flat plate with ramped wall temperature. Journal of Orissa Mathematical Society, 32, 15–30.

    MathSciNet  Google Scholar 

  29. Ebaid, A., & Sharif, M. A. A. (2015). Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids. Zeitschrift für Naturforschung, 70, 471–475.

    Article  Google Scholar 

  30. Turkyilmazoglu, M. (2014). Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer. Journal of Heat Transfer, 136, 031704–031711.

    Article  Google Scholar 

  31. Asma, K., Khan, I., & Shafie, S. (2015). Exact solutions for free convection flow of nanofluids with ramped wall temperature. The European Physical Journal Plus, 130, 1–14.

    Article  Google Scholar 

  32. Merkin, J. H. (1994). Natural convection boundary layer flow on a vertical surface with Newtonian heating. International Journal of Heat and Fluid Flow, 15, 392–398.

    Article  Google Scholar 

  33. Hussanan, A., Khan, I., & Shafie, S. (2013). An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. Journal of Applied Mathematics, 2013, 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  34. Hussanan, A., Anwar, M. I., Farhad, A., Khan, I., & Sharidan, S. (2014). Natural convection flow past an oscillating plate with Newtonian heating. Heat Transfer Research, 45, 119–137.

    Article  Google Scholar 

  35. Alkasasbeh, H. T., & Salleh, M. Z. (2014). Numerical solutions of radiation effect on MHD free convection boundary layer flow about a solid sphere with Newtonian heating. Applied Mathematical Sciences, 8, 6989–7000.

    Article  Google Scholar 

  36. Hussanan, A., Ismail, Z., Khan, I., Hussein, A. G., & Shafie, S. (2014). Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. The European Physical Journal Plus, 129, 1–16.

    Article  Google Scholar 

  37. Hussanan, A., Salleh, M. Z., Tahar, R. M., & Khan, I. (2014). Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PLoS One, 9, 1–9.

    Article  Google Scholar 

  38. Vafai, K., & Thiyagaraja, R. (1987). Analysis of flow and heat transfer at the interface region of a porous medium. International Journal of Heat and Mass Transfer, 30, 1391–1405.

    Article  MATH  Google Scholar 

  39. Komy, S. R., Barakat, E. S. I., & Abdelsalam, S. I. (2012). Hall and porous boundaries effects on peristaltic transport through porous medium of a Maxwell model. Transport in Porous Media, 94, 643–658.

    Article  MathSciNet  Google Scholar 

  40. Mekheimer, K. S., Komy, S. R., & Abdelsalam, S. I. (2013). Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel. Chinese Physics B, 22(12), 124702–124701.

    Article  Google Scholar 

  41. Abdelsalam, S. I., & Vafai, K. (2017). Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. European Journal of Mechanics - B/Fluids, 65, 398–411.

    Article  MathSciNet  MATH  Google Scholar 

  42. Elmaboud, Y. A., Abdelsalam, S. I., Mekheimer, K. S., & Vafai, K. (2018). Electromagnetic flow for two-layer immiscible fluids. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2018.07.018.

Download references

Funding

The research is supported by China Postdoctoral Science Foundation (Grant No. 2018M643156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussanan, A., Khan, I., Gorji, M.R. et al. CNTS-Water–Based Nanofluid Over a Stretching Sheet. BioNanoSci. 9, 21–29 (2019). https://doi.org/10.1007/s12668-018-0592-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0592-6

Keywords

Navigation