Skip to main content
Log in

Scheduling appointments for container truck arrivals considering their effects on congestion

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Trucking companies deliver a large number of containers every day to container terminals at hub ports. Truck drivers for the delivery operation can experience long waiting times when they arrive at peak hours. This study proposes a scheduling method for appointments that considers the cost of trucks staying in the terminal, demurrage cost, container delivery cost, number of appointments allowed at each time window and block, and number of trucks available during each time window. Unlike previous studies, this study considers the effects of the appointments on the waiting time at the terminal when the appointment schedule is constructed. This paper introduces a mathematical formulation and a heuristic algorithm based on the Frank–Wolfe algorithm to solve the problem within a reasonable computational time. Numerical experiments are conducted to compare the proposed algorithm with the other heuristic approaches and analyze the effects of the appointments using empirical data. In addition, the impact of appointments by multiple trucking companies is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.ibm.com/analytics/cplex-optimizer.

References

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, New York

    MATH  Google Scholar 

  • Bellman R (1958) On a routing problem. Q Appl Math 16:87–90

    Article  MathSciNet  MATH  Google Scholar 

  • Chen G, Govindan K, Yang Z (2013) Managing truck arrivals with time windows to alleviate gate congestion at container terminal. Int J Prod Econ 141(1):179–188

    Article  Google Scholar 

  • Dijkstra E (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Duan F (1994) A faster algorithm for shortest path-SPFA. J Southwest Jiao Tong 2:207–212

    MATH  Google Scholar 

  • Giuliano G, O’Brien T (2007) Reducing port-related truck emissions: the terminal gate appointment system at the ports of Los Angeles and Long Beach. Transp Res Part D 12(7):460–473

    Article  Google Scholar 

  • Heilig L, Lalla-Ruiz E, Voß S (2017a) Multi-objective inter-terminal truck routing. Transp Res Part E 106:178–202

    Article  Google Scholar 

  • Heilig L, Lalla-Ruiz E, Voß S (2017b) Port-IO: an integrative mobile cloud platform for real-time inter-terminal truck routing optimization. Flex Serv Manuf J 29(3–4):504–534

    Article  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis. Cambridge University Press, New York

    MATH  Google Scholar 

  • Kim HJ (2017) An operation method of truck appointment system utilizing estimated waiting time in container terminals. Pusan National University, Thesis Presentation

    Google Scholar 

  • Lalla-Ruiz E, Armas J, Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM (2015) A multi-stage approach aimed at optimizing the transshipment of containers in a maritime container terminal. In: 15th international conference on computer aided systems theory, LNCS, vol 9520. Springer International Publishing, pp 255–262

  • Murty KG, Wan YW, Liu J, Tseng MM, Leung E, Lai KK, Chiu HWC (2005) Hongkong international terminals gains elastic capacity using a data- intensive decision-support system. Interfaces 35:61–75

    Article  Google Scholar 

  • Nossack J, Pesch E (2013) A truck scheduling problem arising in intermodal container transportation. Eur J Oper Res 230:666–680

    Article  MathSciNet  MATH  Google Scholar 

  • Phan TMH, Kim KH (2015a) Negotiating truck arrival times among trucking companies. Transp Res Part E 75:132–144

    Article  Google Scholar 

  • Phan TMH, Kim KH (2015b) Truck appointment system for transshipment containers in terminals. In: Proceedings of the Asia Pacific industrial engineering and management systems conference 2015, pp 1560–1567

  • Phan TMH, Kim KH (2016) Collaborative truck scheduling and appointments for trucking companies and container terminals. Transp Res Part B 86:37–50

    Article  Google Scholar 

  • Pusan East Container Terminal Co Ltd (2004) Shinsundae terminal stevedoring tariff. Pusan East Container Terminal Co Ltd, Busan

    Google Scholar 

  • Riaventin VN, Kim KH (2018) Scheduling appointments of truck arrivals at container terminals. Int J Ind Eng 25(5):590–603

    Google Scholar 

  • Schulte F, Lalla-Ruiz E, González-Ramírez RG, Voß S (2017) Reducing port-related empty truck emissions: a mathematical approach for truck appointments with collaboration. Transp Res Part E 105:195–212

    Article  Google Scholar 

  • Stanley R (2013) Algebraic combinatorics: walks, tree, tableaux, and more. Springer, New York

    Book  MATH  Google Scholar 

  • Steenken D, Voss S, Stahlbock R (2004) Container terminal operation and operations research—a classification and literature review. OR Spectr 26:3–49

    Article  MATH  Google Scholar 

  • Wang WF, Yun WY (2013) Scheduling for inland container truck and train transportation. Int J Prod Econ 143(2):349–356

    Article  Google Scholar 

  • Zehendner E, Feillet D (2014) Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal. Eur J Oper Res 235:461–469

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang R, Yun WY, Moon IK (2009) A reactive tabu search algorithm for the multi-depot container truck transportation problem. Transp Res Part E 45:904–914

    Article  Google Scholar 

  • Zhang R, Yun WY, Kopfer H (2010) Heuristic-based truck scheduling for inland container transportation. OR Spectr 32(3):787–808

    Article  MATH  Google Scholar 

  • Zhang X, Zeng Q, Chen W (2013) Optimization model for truck appointment in container terminals. Procedia Soc Behav Sci 96:1938–1947

    Article  Google Scholar 

  • Zhao W, Goodchild AV (2010) The impact of truck arrival information on container terminal rehandling. Transp Res Part E 46(3):327–343

    Article  Google Scholar 

Download references

Funding

Funding

Funding was provided by National Research Foundation of Korea (2016R1D1A3B03934161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kap Hwan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of the convexity of \(TC\left( X \right)\) (Property 1)

$$\begin{aligned} TC\left( X \right) & = \mathop \sum \limits_{i \in U} \mathop \sum \limits_{{b \in B_{i} }} \mathop \sum \limits_{t \in T} \left[ {cS_{ibt} \left( {Z_{bt} } \right) + d_{it} + ba_{it} } \right]X_{ibt} \\ & = \mathop \sum \limits_{{i \in U_{b} }} \mathop \sum \limits_{b \in B} \mathop \sum \limits_{t \in T} \left[ {cS_{ibt} \left( {Z_{bt} } \right) + d_{it} + ba_{it} } \right]X_{ibt} \\ & = \mathop \sum \limits_{{i \in U_{b} }} \mathop \sum \limits_{b \in B} \mathop \sum \limits_{t \in T} \left[ {cW_{bt} \left( {Z_{bt} } \right) + cs_{i} + d_{it} + ba_{it} } \right]X_{ibt} , \\ \end{aligned}$$

where \(s_{i} = s_{I}\) when task \(i\) is for inbound containers, while it is \(s_{O}\) when task is for outbound containers.

$$TC\left( X \right) = \mathop \sum \limits_{b \in B} \mathop \sum \limits_{t \in T} \mathop \sum \limits_{{i \in U_{b} }} \left[ {cW_{bt} \left( {Z_{bt} } \right)X_{ibt} + \left( {cs_{i} + d_{it} + ba_{it} } \right)X_{ibt} } \right]$$
(10)

An attempt is made to show that the Hessian matrix (\(h_{ij}\)) is positive definite, where \(h_{ij} = \frac{{\partial^{2} {\text{TC}}\left( {\text{X}} \right)}}{{\partial X_{ibt} \partial X_{jbt} }}\). Note that the second term in (10) vanishes in the second order derivatives of (\(h_{ij}\)). Therefore, this study will only show that \(\mathop \sum \limits_{{i \in U_{b} }} W_{bt} \left( {Z_{bt} } \right)X_{ibt}\) is convex with respect to \((X_{ibt} | i \in U_{b} )\) for a given \(b\) and \(t\), which leads to the convexity of \(TC\left( X \right)\) from the theory that the sum of the convex functions is again a convex function. Note that \(Z_{bt} = \mathop \sum \limits_{{i \in U_{b} }} X_{ibt}\). The subscripts \(b\) and \(t\) were omitted in this proof for the simplicity. Then, \(X_{i} = X_{ibt}\), \(Z = Z_{bt}\), \(U = U_{b}\), and \(W = W_{bt} .\) Let \(Y = X_{i}\), \(F\left( Y \right) = \mathop \sum \limits_{k \in U} X_{k} W\left( {\text{Z}} \right)\).

$$\begin{aligned} \frac{\partial F\left( Y \right)}{{\partial X_{i} }} & = W\left( Z \right) + X_{i} \frac{\partial W\left( Z \right)}{{\partial X_{i} }} + X_{j} \frac{\partial W\left( Z \right)}{{\partial X_{i} }} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{\partial W\left( Z \right)}{{\partial X_{i} }} \\ & = W\left( Z \right) + X_{i} \frac{\partial W\left( Z \right)}{\partial Z}\frac{\partial Z}{{\partial X_{i} }} + X_{j} \frac{\partial W\left( Z \right)}{\partial Z}\frac{\partial Z}{{\partial X_{i} }} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{\partial W\left( Z \right)}{\partial Z}\frac{\partial Z}{{\partial X_{i} }} \\ & = W\left( Z \right) + X_{i} \frac{\partial W\left( Z \right)}{\partial Z} + X_{j} \frac{\partial W\left( Z \right)}{\partial Z} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{\partial W\left( Z \right)}{\partial Z} \\ & \left( {{\text{note}}\,{\text{that}}\frac{\partial Z}{{\partial X_{i} }} = 1\quad {\text{because}}\quad Z = \mathop \sum \limits_{i \in U} X_{i} } \right). \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial^{2} F\left( Y \right)}}{{\partial X_{i} \partial X_{j} }} & = \frac{\partial W\left( Z \right)}{\partial Z}\frac{\partial Z}{{\partial X_{j} }} + X_{i} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{j} }} + \frac{\partial W\left( Z \right)}{\partial Z} + X_{j} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{j} }} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{j} }} \\ & = 2\frac{\partial W\left( Z \right)}{\partial Z} + \mathop \sum \limits_{k \in U} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}. \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial^{2} F\left( Y \right)}}{{\partial X_{i}^{2} }} & = \frac{\partial W\left( Z \right)}{\partial Z}\frac{\partial Z}{{\partial X_{i} }} + \frac{\partial W\left( Z \right)}{\partial Z} + X_{i} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{i} }} + X_{j} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{i} }} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}\frac{\partial Z}{{\partial X_{i} }} \\ & = \frac{\partial W\left( Z \right)}{\partial Z} + \frac{\partial W\left( Z \right)}{\partial Z} + X_{i} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }} + X_{j} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }} + \mathop \sum \limits_{{k \in U - \left\{ {i, j} \right\}}} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }} \\ & = 2\frac{\partial W\left( Z \right)}{\partial Z} + \mathop \sum \limits_{k \in U} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}. \\ \end{aligned}$$

The Hessian matrix \(H = \left[ {h_{ij} } \right] = \left( {2\frac{\partial W\left( Z \right)}{\partial Z} + \mathop \sum \limits_{k \in U} X_{k} \frac{{\partial^{2} W\left( Z \right)}}{{\partial Z^{2} }}} \right)J_{\left| U \right|}\), where \(J_{\left| U \right|}\) is the \(\left| U \right| \times \left| U \right|\) matrix of ones. It is known that \(J_{\left| U \right|}\) is a positive semi definite matrix (Stanley 2013, Horn and Johnson 2013). From the assumption that \(W\left( Z \right)\) is a non-decreasing and convex function of \(Z\), \(\frac{{\partial {\text{W}}\left( {\text{Z}} \right)}}{\partial Z} \ge 0\) and \(\frac{{\partial^{2} {\text{W}}\left( {\text{Z}} \right)}}{{\partial Z^{2} }} > 0\), \(H\) is a positive semi definite matrix. Hence, \(TC\left( X \right)\) is convex. Q.E.D.

Appendix 2: Proof that the expression for the expected waiting time of M/M/1 queue satisfies the condition for Property 1

\(W\left( Z \right) = \frac{Z}{{\mu \left( {\mu - Z} \right)}}\) in the M/M/1 queuing model, where \(\mu\) represents the expected service rate of the server. Note that \(\mu > Z\) must hold. \(\frac{dW\left( Z \right)}{dZ} = \frac{1}{{\left( {\mu - Z} \right)^{2} }} > 0\).

\(\frac{{d^{2} W\left( Z \right)}}{{dZ^{2} }} = \frac{2}{{\left( {\mu - Z} \right)^{3} }} > 0\). Hence, the conclusion holds. Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Scholz-Reiter, B., Kim, T. et al. Scheduling appointments for container truck arrivals considering their effects on congestion. Flex Serv Manuf J 31, 730–762 (2019). https://doi.org/10.1007/s10696-019-09333-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-019-09333-y

Keywords

Navigation