Skip to main content

Practical Causal Models for Cyber-Physical Systems

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11460))

Included in the following conference series:

Abstract

Unlike faults in classical systems, faults in Cyber-Physical Systems will often be caused by the system’s interaction with its physical environment and social context, rendering these faults harder to diagnose. To complicate matters further, knowledge about the behavior and failure modes of a system are often collected in different models. We show how three of those models, namely attack trees, fault trees, and timed failure propagation graphs can be converted into Halpern-Pearl causal models, combined into a single holistic causal model, and analyzed with actual causality reasoning to detect and explain unwanted events. Halpern-Pearl models have several advantages over their source models, particularly that they allow for modeling preemption, consider the non-occurrence of events, and can incorporate additional domain knowledge. Furthermore, such holistic models allow for analysis across model boundaries, enabling detection and explanation of events that are beyond a single model. Our contribution here delineates a semi-automatic process to (1) convert different models into Halpern-Pearl causal models, (2) combine these models into a single holistic model, and (3) reason about system failures. We illustrate our approach with the help of an Unmanned Aerial Vehicle case study.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. PR1266/3-1, Design Paradigms for Societal-Scale Cyber-Physical Systems. Amjad Ibrahim and Severin Kacianka contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Accessible at http://modelbasedassurance.org.

  2. 2.

    For more details on the notations see Sect. 2.

References

  1. Abdelwahed, S., Dubey, A., Karsai, G., Mahadevan, N.: Model-based tools and techniques for real-time system and software health management. In: Srivastava, A., Han, J. (eds.) Machine Learning and Knowledge Discovery for Engineering Systems Health Management. Chapman and Hall/CRC, London (2011). Chapter 9

    Google Scholar 

  2. Abdelwahed, S., Karsai, G., Biswas, G.: A consistency-based robust diagnosis approach for temporal causal systems. In: The 16th International Workshop on Principles of Diagnosis, pp. 73–79 (2005)

    Google Scholar 

  3. Alrajeh, D., Chockler, H., Halpern, J.Y.: Combining experts’ causal judgments. In: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-2018) (2018)

    Google Scholar 

  4. Bruns, G., Anderson, S.: Validating safety models with fault trees. In: Górski, J. (ed.) SAFECOMP 1993, pp. 21–30. Springer, London (1993). https://doi.org/10.1007/978-1-4471-2061-2_3

    Chapter  Google Scholar 

  5. DJI: Fly safe - geo zone map (2018). https://www.dji.com/en/flysafe/geo-map. Accessed 03 Dec 2018

  6. Dubey, A., Karsai, G., Mahadevan, N.: Model-based software health management for real-time systems. In: 2011 Aerospace Conference, pp. 1–18, March 2011. https://doi.org/10.1109/AERO.2011.5747559

  7. Eurocontrol: Useful information on UAS no-fly areas (2018). https://www.eurocontrol.int/articles/useful-information-uas-no-fly-areas. Accessed 03 Dec 2018

  8. FAA: Airspace restrictions (2018). https://www.faa.gov/uas/where_to_fly/airspace_restrictions/. Accessed 03 Dec 2018

  9. Friedenberg, M., Halpern, J.Y.: Combining the causal judgments of experts with possibly different focus areas (2018). http://www.cs.cornell.edu/home/halpern/papers/focus.pdf

  10. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: International Joint Conference on Artificial Intelligence, pp. 3022–3033 (2015). https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11058/11085

  11. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005). https://doi.org/10.1093/bjps/axi147

    Article  MATH  Google Scholar 

  12. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005). https://doi.org/10.1093/bjps/axi148

    Article  MATH  Google Scholar 

  13. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software requirements. IEEE Trans. Software Eng. 24, 573–584 (1998). https://doi.org/10.1109/32.708570. doi.ieeecomputersociety.org/10.1109/32.708570

    Article  Google Scholar 

  14. Ibrahim, A., Rehwald, S., Pretschner, A.: Efficiently checking actual causality with sat solving. In: Dependable Software Systems Engineering (2019, to appear)

    Google Scholar 

  15. Kacianka, S., Pretschner, A.: Understanding and formalizing accountability for cyber-physical systems. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), October 2018. https://arxiv.org/abs/1810.09704

  16. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38 (2014)

    Article  Google Scholar 

  17. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_16

    Chapter  MATH  Google Scholar 

  18. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973). https://doi.org/10.2307/2025310

    Article  Google Scholar 

  19. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727_17

    Chapter  Google Scholar 

  20. Narayanan, N.H., Viswanadham, N.: A methodology for knowledge acquisition and reasoning in failure analysis of systems. IEEE Trans. Syst. Man Cybern. 17(2), 274–288 (1987)

    Article  Google Scholar 

  21. Papadopoulos, Y.: Model-based system monitoring and diagnosis of failures using statecharts and fault trees. Reliab. Eng. Syst. Saf. 81(3), 325–341 (2003)

    Article  Google Scholar 

  22. Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)

    Google Scholar 

  23. Poolsapassit, N., Ray, I.: Investigating computer attacks using attack trees. In: Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 331–343. Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3_23

    Chapter  Google Scholar 

  24. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_14

    Chapter  Google Scholar 

  25. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

    Article  MathSciNet  Google Scholar 

  26. Schneier, B.: Attack trees - modeling security threats. DR DOBBS J. (1999). http://www.schneier.com/paper-attacktrees-ddj-ft.html

  27. Schneier, B.: Secrets and Lies - Digital Security in a Networked World: With New Information About Post-9/11 Security. Wiley, Indianapolis (2004)

    Google Scholar 

  28. Simon, G., et al.: Model-based fault-adaptive control of complex dynamic systems. In: Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No. 03CH37412), vol. 1, pp. 176–181, May 2003. https://doi.org/10.1109/IMTC.2003.1208147

  29. Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault tree handbook (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, A., Kacianka, S., Pretschner, A., Hartsell, C., Karsai, G. (2019). Practical Causal Models for Cyber-Physical Systems. In: Badger, J., Rozier, K. (eds) NASA Formal Methods. NFM 2019. Lecture Notes in Computer Science(), vol 11460. Springer, Cham. https://doi.org/10.1007/978-3-030-20652-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20652-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20651-2

  • Online ISBN: 978-3-030-20652-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics