Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites

Abstract

Although metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence lifetime of low-dimensional, perovskite-like tin-halides and apply this property to thermal imaging. The photoluminescence lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns °C−1). Typically, this sensitive range spans up to 100 °C, and it is both compound-specific and shown to be compositionally and structurally tunable from −100 to 110 °C going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through the implementation of cost-effective hardware for fluorescence lifetime imaging, based on time-of-flight technology, these thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visible-light and IR thermography comparison.
Fig. 2: Crystallographic structures and basic optical properties of select thermographic luminophores.
Fig. 3: Thermal effects on PL lifetime variation of STE emission in low-dimensional tin-halides.
Fig. 4: Demonstration of the principles for remote thermography based on ToF sensors.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lahiri, B. B., Bagavathiappan, S., Jayakumar, T. & Philip, J. Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55, 221–235 (2012).

    Article  Google Scholar 

  2. Jones, H. G. et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36, 978–989 (2009).

    Article  Google Scholar 

  3. Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J. & Jayakumar, T. Infrared thermography for condition monitoring—a review. Infrared Phys. Technol. 60, 35–55 (2013).

    Article  Google Scholar 

  4. Tang, X., Ackerman, M. M. & Guyot-Sionnest, P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 12, 7362–7370 (2018).

    Article  CAS  Google Scholar 

  5. Lhuillier, E., Keuleyan, S., Rekemeyer, P. & Guyot-Sionnest, P. Thermal properties of mid-infrared colloidal quantum dot detectors. J. Appl. Phys. 110, 033110 (2011).

    Article  CAS  Google Scholar 

  6. Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 36, 342–473 (2012).

    Article  Google Scholar 

  7. Peterson, B. J. Infrared imaging video bolometer. Rev. Sci. Instrum. 71, 3696–3701 (2000).

    Article  CAS  Google Scholar 

  8. Mykhaylyk, V. B., Wagner, A. & Kraus, H. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography. J. Synchrotron Radiat. 24, 636–645 (2017).

    Article  CAS  Google Scholar 

  9. Allison, S. W. & Gillies, G. T. Remote thermometry with thermographic phosphors: instrumentation and applications. Rev. Sci. Instrum. 68, 2615–2650 (1997).

    Article  CAS  Google Scholar 

  10. Marciniak, L., Prorok, K., Frances-Soriano, L., Perez-Prieto, J. & Bednarkiewicz, A. A broadening temperature sensitivity range with a core–shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8, 5037–5042 (2016).

    Article  CAS  Google Scholar 

  11. Salem, M., Staude, S., Bergmann, U. & Atakan, B. Heat flux measurements in stagnation point methane/air flames with thermographic phosphors. Exp. Fluids 49, 797–807 (2010).

    Article  CAS  Google Scholar 

  12. Alaruri, S. D., Brewington, A. J., Thomas, M. A. & Miller, J. A. High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors. IEEE Trans. Instrum. Meas. 42, 735–739 (1993).

    Article  CAS  Google Scholar 

  13. Brübach, J., Pflitsch, C., Dreizler, A. & Atakan, B. On surface temperature measurements with thermographic phosphors: a review. Prog. Energy Combust. Sci. 39, 37–60 (2013).

    Article  CAS  Google Scholar 

  14. Wang, X.-d, Wolfbeis, O. S. & Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013).

    Article  CAS  Google Scholar 

  15. Brübach, J. et al. A survey of phosphors novel for thermography. J. Lumin. 131, 559–564 (2011).

    Article  CAS  Google Scholar 

  16. Sun, T., Zhang, Z. Y., Grattan, K. T. V., Palmer, A. W. & Collins, S. F. Temperature dependence of the fluorescence lifetime in Pr3+:ZBLAN glass for fiber optic thermometry. Rev. Sci. Instrum. 68, 3447–3451 (1997).

    Article  CAS  Google Scholar 

  17. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012).

    Article  CAS  Google Scholar 

  18. Abram, C., Fond, B. & Beyrau, F. Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles. Prog. Energy Combust. Sci. 64, 93–156 (2018).

    Article  Google Scholar 

  19. Bhandari, A., Barsi, C. & Raskar, R. Blind and reference-free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica 2, 965–973 (2015).

    Article  Google Scholar 

  20. Li, D. D.-U. et al. Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays. Sensors 12, 5650–5669 (2012).

    Article  CAS  Google Scholar 

  21. Mao, L. et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J. Am. Chem. Soc. 140, 13078–13088 (2018).

    Article  CAS  Google Scholar 

  22. Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900–907 (2018).

    Article  CAS  Google Scholar 

  23. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  24. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  CAS  Google Scholar 

  25. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8, 489 (2014).

    Article  CAS  Google Scholar 

  26. Yakunin, S., Shynkarenko, Y., Dirin, D. N., Cherniukh, I. & Kovalenko, M. V. Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Mater. 9, e431 (2017).

    Article  CAS  Google Scholar 

  27. Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  CAS  Google Scholar 

  28. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  CAS  Google Scholar 

  29. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  CAS  Google Scholar 

  30. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    Article  CAS  Google Scholar 

  31. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  Google Scholar 

  32. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  CAS  Google Scholar 

  33. Quan, L. N., García de Arquer, F. P., Sabatini, R. P. & Sargent, E. H. Perovskites for light emission. Adv. Mater. 0, 1801996 (2018).

    Article  CAS  Google Scholar 

  34. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  CAS  Google Scholar 

  35. Lin, H., Zhou, C., Tian, Y., Siegrist, T. & Ma, B. Low-dimensional organometal halide perovskites. ACS Energy Lett. 3, 54–62 (2018).

    Article  CAS  Google Scholar 

  36. Zhou, C. et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56, 9018–9022 (2017).

    Article  CAS  Google Scholar 

  37. Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    Article  CAS  Google Scholar 

  38. Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).

    Article  CAS  Google Scholar 

  39. Nazarenko, O. et al. Guanidinium and mixed cesium-guanidinium tin(ii) bromides: effects of quantum confinement and out-of-plane octahedral tilting. Chem. Mater. 31, 2121–2129 (2019).

    Article  CAS  Google Scholar 

  40. Benin, B. M. et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem. Int. Ed. 57, 11329–11333 (2018).

    Article  CAS  Google Scholar 

  41. Zhou, C. et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018).

    Article  CAS  Google Scholar 

  42. Hansel, R., Allison, S. & Walker, G. Temperature-dependent fluorescence of nanocrystalline Ce-doped garnets for use as thermographic phosphors. In Proceedings of Materials Research Socicty Symposium Vol. 1076, 181–187 (Cambridge Univ. Press, 2008).

  43. Allison, S. W., Buczyna, J. R., Hansel, R. A., Walker, D. G. & Gillies, G. T. Temperature-dependent fluorescence decay lifetimes of the phosphor Y3(Al0.5Ga0.5)5O12:Ce 1%. J. Appl. Phys. 105, 036105 (2009).

    Article  CAS  Google Scholar 

  44. Andrews, R. H., Clark, S. J., Donaldson, J. D., Dewan, J. C. & Silver, J. Solid-state properties of materials of the type Cs4MX6 (where M = Sn or Pb and X = Cl or Br). J. Chem. Soc. Dalton Trans. 767–770 (1983).

  45. Voloshinovskii, A. S., Mikhailik, V. B., Myagkota, S. V., Ostrovskii, I. P. & Pidzyrailo, N. S. Electronic states and luminescence properties of CsSnBr3 crystal. Opt. Spectrosc. 72, 486–488 (1992).

    Google Scholar 

  46. Jellicoe, T. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016).

    Article  CAS  Google Scholar 

  47. Ahmed, N. et al. Characterisation of tungstate and molybdate crystals ABO4 (A = Ca, Sr, Zn, Cd; B = W, Mo) for luminescence lifetime cryothermometry. Materialia 4, 287–296 (2018).

    Article  Google Scholar 

  48. Savchuk, O. A. et al. Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. Nanoscale 6, 9727–9733 (2014).

    Article  CAS  Google Scholar 

  49. Man, M. T. & Lee, H. S. Discrete states and carrier-phonon scattering in quantum dot population dynamics. Sci. Rep. 5, 8267 (2015).

    Article  CAS  Google Scholar 

  50. Rowley, M. I., Coolen, A. C., Vojnovic, B. & Barber, P. R. Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging. PLoS ONE 11, e0158404 (2016).

    Article  CAS  Google Scholar 

  51. Boens, N. et al. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem. 79, 2137–2149 (2007).

    Article  CAS  Google Scholar 

  52. He, Y., Liang, B., Zou, Y., He, J. & Yang, J. Depth errors analysis and correction for time-of-flight (ToF) cameras. Sensors 17, 92 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

M.V.K. acknowledges financial support from the European Union through FP7 (ERC starting grant NANOSOLID, GA no. 306733) and Horizon‐2020 (Marie‐Skłodowska Curie ITN network PHONSI, H2020‐MSCA‐ITN‐642656). C.H. and S.C. thank the Swiss Nano-Tera programme (projects FlusiTex and FlusiTex Gateway) and the Swiss Commission for Technology and Innovation CTI (project SecureFLIM) for financing the development of the ToF-FLI imager. The authors thank G. Rainò and S.T. Ochsenbein for discussions.

Author information

Authors and Affiliations

Authors

Contributions

This work originated from continuing interactions between the research groups at ETH Zurich and CSEM. S.Y., B.M.B. and Y.S. performed measurements. C.H. and S.C. developed and adapted the FLI reader. B.M.B., O.N., D.N.D. and M.I.B. synthesized the tin-halide thermographic luminophores. S.Y. and Y.S. analysed the results. S.Y., B.M.B. and M.V.K. wrote the manuscript. M.V.K. supervised the work. S.Y. and B.M.B. contributed equally to this work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sergii Yakunin or Maksym V. Kovalenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1-4, Supplementary Figs. 1–21, Supplementary references 1–4

Video 1: Thermographic video

The dynamics of temperature change in the sample and heat transfer through the substrates due to brief contact with a hot soldering pin (the temperature of pin apex was approx. 120 °C). The sample is (C4N2H14I)4SnI6 powder encapsulated between two relatively thick (1 mm) glass substrates.

Video 2: Thermographic video and corresponding histogram

Thermographic video and corresponding histogram. Dynamic histogram showing the pixel-to-pixel temperature variation in a ToF-FLI thermographic video recorded for homogenously heated sample of Cs4SnBr6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakunin, S., Benin, B.M., Shynkarenko, Y. et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nat. Mater. 18, 846–852 (2019). https://doi.org/10.1038/s41563-019-0416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0416-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing