Skip to main content

Advertisement

Log in

Are marginalized two-part models superior to non-marginalized two-part models for count data with excess zeroes? Estimation of marginal effects, model misspecification, and model selection

  • Published:
Health Services and Outcomes Research Methodology Aims and scope Submit manuscript

Abstract

The marginalized two-part models, including the marginalized zero-inflated Poisson and negative binomial models, have been proposed in the literature for modelling cross-sectional healthcare utilization count data with excess zeroes and overdispersion. The motivation for these proposals was to directly capture the overall marginal effects and to avoid post-modelling effect calculations that are needed for the non-marginalized conventional two-part models. However, are marginalized two-part models superior to non-marginalized two-part models because of their structural property? Is it true that the marginalized two-part models can provide direct marginal inference? This article aims to answer these questions through a comprehensive investigation. We first summarize the existing non-marginalized and marginalized two-part models and then develop marginalized hurdle Poisson and negative binomial models for cross-sectional count data with abundant zero counts. Our interest in the investigation lies particularly in the (average) marginal effect and (average) incremental effect and the comparison of these effects. The estimators of these effects are presented, and variance estimators are derived by using delta methods and Taylor series approximations. Though the marginalized models attract attention because of the alleged convenience of direct marginal inference, we provide evidence for the impact of model misspecification of the marginalized models over the conventional models, and provide evidence for the importance of goodness-of-fit evaluation and model selection in differentiating between the marginalized and non-marginalized models. An empirical analysis of the German Socioeconomic Panel data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, A., Rathouz, P.J.: Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics 6, 93–109 (2005)

    Article  PubMed  Google Scholar 

  • Cameron, A.C., Trivedi, P.K.: Microeconometrics: Methods and Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  • Cragg, T.C.: Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 39, 829–844 (1971)

    Article  Google Scholar 

  • Dow, W., Norton, E.: Choosing between and interpreting the Heckit and two-part models for corner solutions. Health Serv. Outcomes Res. Methodol. 4, 5–18 (2003)

    Article  Google Scholar 

  • Frick, J.R.: A General Introduction to the German Socio-Economic Panel Study (SOEP)-Design, Contents and Data Structure (Waves A-V, 1984–2005). Deutsches Institut für Wirtschaftsfor-schung, Berlin (2006)

    Google Scholar 

  • Greene, W.H.: Accounting for excess zeroes and sample selection in Poisson and negative binomial regression models. NYU Working Paper No. EC-94-10: Department of Economics, New York University (1994). Available at SSRN https://ssrn.com/abstract=1293115

  • Greene, W.H.: Econometric Analysis, 5th edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  • Hall, D.B.: Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56, 1030–1039 (2000)

    Article  PubMed  CAS  Google Scholar 

  • Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., Verbeke, G.: Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeroes. Stat. Med. 33, 4402–4419 (2014)

    Article  PubMed  Google Scholar 

  • Lambert, D.: Zero-inflated Poisson regression with an application to defects in manufacturing. Technometrics 34, 1–4 (1992)

    Article  Google Scholar 

  • Li, C.S., Lu, J.C., Park, J., Kim, K., Brinkley, P.A., Peterson, J.P.: Multivariate zero-inflated Poisson models and their applications. J. Technometr. 41, 29–38 (1999)

    Article  Google Scholar 

  • Long, L.D., Preisser, J.S., Herring, A.H., Golin, C.E.: A marginalized zero-inflated Poisson regression model with overall exposure effects. Stat. Med. 33, 5151–5165 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden, D.: Sample selection versus two-part models revisited: the case of female smoking and drinking. J. Health Econ. 27, 300–307 (2008)

    Article  PubMed  Google Scholar 

  • Mullahy, J.: Specification and testing of some modified count data models. J. Econ. 33, 341–365 (1986)

    Article  Google Scholar 

  • Pohlmeier, W., Ulrich, V.: An econometric model of the two-part decision making process in the demand for health care. J. Hum. Resour. 30, 339–361 (1995)

    Article  Google Scholar 

  • Preisser, J.S., Das, K., Long, D.L., Divaris, K.: Marginalized zero-inflated negative binomial regression with application to dental caries. Stat. Med. 35, 1722–1735 (2016)

    Article  PubMed  Google Scholar 

  • Ridout, M., Hinde, J., Demetrio, C.G.B.: A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57, 219–223 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Riphahn, R., Wambach, A., Million, A.: Incentive effects in the demand for health care: a bivariate panel count data estimation. J. Appl. Econ. 18, 387–405 (2003)

    Article  Google Scholar 

  • Staub, K., Winkelmann, R.: Consistent estimation of zero-inflated count models. Health Econ. 22, 673–686 (2013)

    Article  PubMed  Google Scholar 

  • Tabb, L.P., Tchetgen, E.J., Wellenius, G.A., Coull, B.A.: Marginalized zero-altered models for longitudinal count data. Stat. Biosci. 8, 181–203 (2016)

    Article  PubMed  Google Scholar 

  • Vuong, Q.H.: Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307–333 (1989)

    Article  Google Scholar 

  • Wang, Z., Ma, S., Wang, C.Y.: Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany. Biometr. J. 57(5), 867–884 (2015)

    Article  Google Scholar 

  • White, H.: Maximum likelihood estimationof misspecified models. Econometrica 50, 1–25 (1982)

    Article  Google Scholar 

  • Winkelmann, R.: Econometric Analysis of Count Data, 5th edn. Springer, Berlin (2008)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the Editor, Associate Editor, and two anonymous reviewers for the valuable and insightful comments.

Funding

This study is not funded by any specific grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhang or Hui Zhang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not applicable, as the article does not contain any studies with human participants or animals performed by any of the authors.

Appendix: Gradients of marginal effects

Appendix: Gradients of marginal effects

1.1 Gradients of marginal effects in the ZIP and ZINB models

Recall that ZIP and ZINB have the identical expression of marginal expectation of response \(y_i\): \(\displaystyle \text{ E }(y_i|x_i,z_i) = \mu _i (1-\psi _i) = \frac{e^{x_i'\beta }}{1 + e^{{z'_i}\gamma }}\) and as a consequence share the same marginal and incremental effect formulas. The difference is the parameter \(\theta\), where \(\theta =(\beta ',\gamma ')'\) for ZIP models and \(\theta =(\beta ',\gamma ',\alpha )'\) for ZINB models.

To simplify computation and notations, we introduce a pair of infinitely differentiable functions on the number line: \(p^{\mathrm{ZIP}}(t)= e^t\) and \(q(t)=\displaystyle \frac{1}{1+e^t}\) with \({\dot{p}}^{\mathrm{ZIP}}(t) = \ddot{p}^{\mathrm{ZIP}}(t) = p^{\mathrm{ZIP}}(t) = e^t\) and \({\dot{q}}(t) = -\displaystyle \frac{e^t}{(1 + e^t)^2}\), \(\ddot{q}(t) = -\displaystyle \frac{e^t}{(1 + e^t)^2}\cdot \frac{1-e^t}{1 + e^t}\), for \(\forall \, t\in {\mathbb {R}}\). Even “ZIP” is used in the superscript of function p and its derivatives, their expressions are exactly the same for ZINB. The \(\theta\) and superscript of p will not be restated again in this subsection. The following discussions are identical for both ZIP and ZINB unless indicated otherwise.

Considering a continuous covariate \(x_{ij}\) in our regression models, we adopt the simplified notations: \(p^{\mathrm{ZIP}}_i, {\dot{p}}^{\mathrm{ZIP}}_i, \ddot{p}^{\mathrm{ZIP}}_i, q_i, {\dot{q}}_i,\ddot{q}_i\) which are \(p^{\mathrm{ZIP}}, {\dot{p}}^{\mathrm{ZIP}}, \ddot{p}^{\mathrm{ZIP}}, q, {\dot{q}}, \ddot{q}\) evaluated at \({x'_i} \beta\) and \({z'_i}\gamma\), respectively. Then, the marginal mean of \(y_i\) is \(\displaystyle \text{ E }(y_i|x_i,z_i) = \mu _i (1-\psi _i) = p^{\mathrm{ZIP}}_iq_i\) and hence the marginal effect with respect to \(x_{ij}\) is \(\eta _j(x_i,z_i,\theta ) = \beta _j {\dot{p}}^{\mathrm{ZIP}}_iq_i + \gamma _j p^{\mathrm{ZIP}}_i{\dot{q}}_i\).

If the covariate \(x_j\), or \(z_j\), is categorical, to rewrite its incremental effect from level \(l_1\) to \(l_2\), the values of \(p^{\mathrm{ZIP}}, {\dot{p}}^{\mathrm{ZIP}}, \ddot{p}^{\mathrm{ZIP}}\) at \(x_{i(-j)}^\prime \beta _{(-j)} + l_2\beta _j\) and \(x_{i(-j)}^\prime \beta _{(-j)} + l_1\beta _j\) will be denoted as \(p_{2i}^{\mathrm{ZIP}}, {\dot{p}}_{2i}^{\mathrm{ZIP}}, \ddot{p}_{2i}^{\mathrm{ZIP}}\) and \(p_{1i}^{\mathrm{ZIP}}, {\dot{p}}_{1i}^{\mathrm{ZIP}}, \ddot{p}_{1i}^{\mathrm{ZIP}}\), respectively; values of \(q, {\dot{q}}, \ddot{q}\) at \(z_{i(-j)}^\prime \gamma _{(-j)} + l_2\gamma _j\) and \(z_{i(-j)}^\prime \gamma _{(-j)} + l_1\gamma _j\) will be represented by \(q_{2i},{\dot{q}}_{2i} ,\ddot{q}_{2i}\) and \(q_{1i},{\dot{q}}_{1i} ,\ddot{q}_{1i}\), respectively. Then, the incremental effect with respect to \(x_{ij}\) is \(\pi _j(x_{i(-j}),z_{i(-j)},\theta ) =p^{\mathrm{ZIP}}_{2i} q_{2i} -p^{\mathrm{ZIP}}_{1i} q_{1i}\).

The gradients of marginal and incremental effects are

$$\begin{aligned}&\displaystyle \nabla _\theta \eta _j(x_i,z_i,\theta )\nonumber \\&\quad = \displaystyle \left( \beta _j \ddot{p}^{\mathrm{ZIP}}_iq_i + \gamma _j{\dot{p}}^{\mathrm{ZIP}}{\dot{q}}\right) \sum \limits _{m = 0}^{J_1} x_{im}u_{(m + 1)}+\displaystyle {\dot{p}}^{\mathrm{ZIP}}_iq _i u_{(j + 1)} \nonumber \\&\displaystyle \qquad + \,\left( \beta _j {\dot{p}}^{\mathrm{ZIP}}_i{\dot{q}}_i + \gamma _j p^{\mathrm{ZIP}}_i\ddot{q}_i\right) \sum \limits _{m = 0}^{J_2}z_{im}u_{(J_1 + m + 2)} + p^{\mathrm{ZIP}}_i{\dot{q}}_i u_{(J_1 + j + 2)}, \nonumber \\&\qquad \nabla _\theta \pi _j(x_{i(-j)},z_{i(-k)},\theta ) \nonumber \\&\quad = \displaystyle \left( {\dot{p}}^{\mathrm{ZIP}}_{2i} q_{2i} -{\dot{p}}^{\mathrm{ZIP}}_{1i} q_{1i} \right) \sum \limits _{m = 0,\ne j}^{J_1} x_{im}u_{(m + 1)} + \left( l_2{\dot{p}}^{\mathrm{ZIP}}_{2i} q_{2i} -l_1{\dot{p}}^{\mathrm{ZIP}}_{1i} q_{1i} \right) \cdot u_{(j + 1)} \nonumber \\&\qquad \displaystyle \quad +\, \left( p^{\mathrm{ZIP}}_{2i} {\dot{q}}_{2i} -p^{\mathrm{ZIP}}_{1i} {\dot{q}}_{1i} \right) \sum \limits _{m = 0,\ne j}^{J_2} z_{im} u_{(J_1 + m + 2)} + \left( l_2p^{\mathrm{ZIP}}_{2i} {\dot{q}}_{2i} -l_1p^{\mathrm{ZIP}}_{1i} {\dot{q}}_{1i} \right) \cdot u_{(J_1 + j + 2)}, \end{aligned}$$
(29)

where \(u_{(m)}\) is a unit vector of dimension \(J_1+J_2+2\) for ZIP and dimension \(J_1+J_2+3\) for ZINB with 1 in the mth component and 0 in others.

1.2 Gradients of marginal effects in the HP models

For HP models, we introduce functions: \(p^{\mathrm{HP}}(t) =\displaystyle \frac{e^{t + e^t}}{e^{e^t}-1}\) and use the same q as ZIP. Then,

$$\begin{aligned}&p^{\mathrm{HP}}(t) = e^t + \sigma (t),\quad {\dot{p}}^{\mathrm{HP}}(t) = e^t + {\dot{\sigma }}(t),\quad \ddot{p}^{\mathrm{HP}}(t) = e^t + \ddot{\sigma }(t), \end{aligned}$$

where \(\displaystyle \sigma (t) = \frac{e^t}{e^{e^t}-1}\), \({\dot{\sigma }}(t) =\sigma (t)\{1-e^t-\sigma (t)\}\), \(\ddot{\sigma }(t) ={\dot{\sigma }}(t)\{1-e^t-2\sigma (t)\}-e^t\sigma (t).\)

Using the similar notations for pq and their derivatives as for ZIP and ZINB models in Sect. 1, the marginal mean is rewritten as \(E(y_i|x_i,z_i) = p^{\mathrm{HP}}_iq_i\), the marginal effect with respect to continuous covariate \(x_{ij}\) is \(\eta _j(x_i,z_i,\theta ) = \beta _j {\dot{p}}^{\mathrm{HP}}_iq_i + \gamma _j p^{\mathrm{HP}}_i{\dot{q}}_i\), and the incremental effect with respect to categorical covariate \(x_{ij}\) from level \(l_1\) to level \(l_2\) is \(\pi _j(x_{i(-j}),z_{i(-j)},\theta ) =p^{\mathrm{HP}}_{2i} q_{2i} -p^{\mathrm{HP}}_{1i} q_{1i}\), where \(\theta =(\beta ',\gamma ')'\). Then, the formulas of gradients of marginal and incremental effects are in the same forms as ZIP models (29) with different layouts of \(p^{\mathrm{HP}}\) and its derivatives \({\dot{p}}^{\mathrm{HP}}\) and \(\ddot{p}^{\mathrm{HP}}\).

1.3 Gradients of marginal effects in the HNB models

The parameter in HNB models is \(\theta =(\beta ',\gamma ',\alpha )'\), and we adopt the same q function in ZIP, ZINB, and HP models but define a new function p by \(p^{\mathrm{HNB}}(t,\alpha ) =\displaystyle \frac{e^t}{1-\rho (t,\alpha )}\), where \(\rho (t,\alpha ) = \tau ^\alpha (t,\alpha )\), \(\tau (t,\alpha ) =\displaystyle \frac{\alpha }{\alpha + e^t}\), and \(\alpha >0\). We will use the same notations in terms of q and its derivatives evaluated at \({z'_i}\gamma\), \(z_{i(-j)}^\prime \gamma _{(-j)} + l_2\gamma _j\) and \(z_{i(-j)}^\prime \gamma _{(-j)} + l_1\gamma _j\), as introduced in previous sections.

With simple computation, we can get derivatives of \(p^{\mathrm{HNB}}\) with respect to t and \(\alpha >0\). In particular, \({\dot{p}}^{\mathrm{HNB}}_t(t,\alpha ) = p^{\mathrm{HNB}}\left( 1-p^{\mathrm{HNB}}\rho \tau \right)\), \(\ddot{p}^{\mathrm{HNB}}_t(t,\alpha ) ={\dot{p}}^{\mathrm{HNB}}_t(t,\alpha ) \left( 1-2p^{\mathrm{HNB}}\rho \tau \right) + (\alpha + 1)\left( p^{\mathrm{HNB}}\right) ^2\rho \tau (1-\tau )\), \(\displaystyle {\dot{p}}^{\mathrm{HNB}}_\alpha (t,\alpha ) = {p^{\mathrm{HNB}}\rho (\ln \tau + 1-\tau )}/{(1-\rho )}\), and \(\ddot{p}^{\mathrm{HNB}}_{t\alpha }(t,\alpha ) =\big \{\displaystyle {\dot{p}}^{\mathrm{HNB}}_\alpha (t,\alpha )\) \(\cdot (1-p^{\mathrm{HNB}}\rho \tau -p^{\mathrm{HNB}}\tau )\big \}-\left\{ (p^{\mathrm{HNB}})^2\rho e^t/(\alpha + e^t)^2\right\}\), where \(\tau = \tau (t,\alpha )\), \(\rho = \rho (t,\alpha )\) for simplicity of notations, \({\dot{\tau }}_t(t,\alpha ) = \tau (\tau -1)\), \(\ddot{\tau }_{tt}(t,\alpha ) = \tau (\tau -1)(2\tau -1)\), \({\dot{\tau }}_\alpha (t,\alpha ) = {e^t}/{(\alpha + e^t)^2}\) \({\dot{\rho }}_t(t,\alpha ) = \alpha \rho (\tau -1) = -e^t\rho \tau\), \(\ddot{\rho }_{tt}(t,\alpha ) = \alpha \rho (\tau -1)\{(\alpha + 1)\tau -\alpha \} = \rho \tau ^2e^t(e^t-1)\), \({\dot{\rho }}_\alpha (t,\alpha ) = \rho (\ln \tau + 1-\tau )\).

For functions \(p^{\mathrm{HNB}}, {\dot{p}}_t^{\mathrm{HNB}}, \ddot{p}_{tt}^{\mathrm{HNB}}, {\dot{p}}^{\mathrm{HNB}}_{\alpha }, \ddot{p}^{\mathrm{HNB}}_{t\alpha }\) evaluated at fixed values of \(({x'_i} \beta ,\alpha )\) are denoted by \(p_i^{\mathrm{HNB}}, {\dot{p}}_{ti}^{\mathrm{HNB}}, \ddot{p}_{tti}^{\mathrm{HNB}}, {\dot{p}}^{\mathrm{HNB}}_{\alpha i}, \ddot{p}^{\mathrm{HNB}}_{t\alpha i}\), respectively. Values of \(p^{\mathrm{HNB}}, {\dot{p}}_t^{\mathrm{HNB}}, {\dot{p}}^{\mathrm{HNB}}_{\alpha }\) at fixed values of \(\big (x_{i(-j)}^\prime \beta _{(-j)} + l_2\beta _j,\alpha \big )\) and \(\big (x_{i(-j)}^\prime \beta _{(-j)} + l_1\beta _j,\alpha \big )\) are denoted by \(p^{\mathrm{HNB}}_{2i}, {\dot{p}}_{2ti}^{\mathrm{HNB}}, {\dot{p}}^{\mathrm{HNB}}_{2\alpha i}\), and \(p^{\mathrm{HNB}}_{1i}, {\dot{p}}_{1ti}^{\mathrm{HNB}}, {\dot{p}}^{\mathrm{HNB}}_{1\alpha i}\), respectively.

By using pq notations, the marginal mean of \(y_i\) can be rewritten as \(E(y_i|x_i,z_i) = p^{\mathrm{HNB}}_iq_i\), the marginal effect with respect to continuous covariate \(x_{ij}\) is \(\eta _j(x_i,z_i,\theta ) = \beta _j {\dot{p}}^{\mathrm{HNB}}_{ti}q_i + \gamma _j p^{\mathrm{HNB}}_i{\dot{q}}_i\), and the incremental effect with respect to categorical covariate \(x_{ij}\) from level \(l_1\) to level \(l_2\) is \(\pi _j(x_{i(-j)},z_{i(-j)},\theta ) =p^{\mathrm{HNB}}_{2i} q_{2i} -p^{\mathrm{HNB}}_{1i} q_{1i}\).

Then, the formulas of gradients of marginal and incremental effects are in the same forms as ZIP models (29) with different layouts of \(p^\mathrm{HP}\) and its derivatives \({\dot{p}}^\mathrm{HP}\) and \(\ddot{p}^\mathrm{HP}\). The gradients of effects with respect to parameter \(\theta\) are

$$\begin{aligned}&\displaystyle \nabla _\theta \eta _j(x_i,z_i,\theta ) \\&\quad = \displaystyle + \left( \beta _j \ddot{p}^{\mathrm{HNB}}_{tti}q_i + \gamma _j{\dot{p}}^{\mathrm{HNB}}_{ti}{\dot{q}}_i\right) \sum \limits _{m = 0}^{J_1} x_{im}u_{(m + 1)} {\dot{p}}^{\mathrm{HNB}}_{ti}q _i u_{(j + 1)}\\&\quad \displaystyle \quad +\, \left( \beta _j {\dot{p}}^{\mathrm{HNB}}_{ti}{\dot{q}}_i + \gamma _j p^{\mathrm{HNB}}_i\ddot{q}_i\right) \sum \limits _{m = 0}^{J_2}z_{im}u_{(J_1 + m + 2)} + p^{\mathrm{HNB}}_i{\dot{q}}_i u_{(J_1 + j + 2)} , \\&\quad\quad \nabla _\theta \pi _j(x_{i(-j)},z_{i(-k)},\theta ) \\&\quad = \displaystyle \left( {\dot{p}}^{\mathrm{HNB}}_{2ti} q_{2i} -{\dot{p}}^{\mathrm{HNB}}_{1ti} q_{1i} \right) \sum \limits _{m = 0,\ne j}^{J_1} x_{im}u_{(m + 1)} + \left( l_2{\dot{p}}^{\mathrm{HNB}}_{2ti} q_{2i} -l_1{\dot{p}}^{\mathrm{HNB}}_{1ti} q_{1i} \right) \cdot u_{(j + 1)}\\&\quad \displaystyle \quad + \,\left( p^{\mathrm{HNB}}_{2i} {\dot{q}}_{2i} -p^{\mathrm{HNB}}_{1i} {\dot{q}}_{1i} \right) \sum \limits _{m = 0,\ne j}^{J_2} z_{im} u_{(J_1 + m + 2)} + \left( l_2p^{\mathrm{HNB}}_{2i} {\dot{q}}_{2i} -l_1p^{\mathrm{HNB}}_{1i} {\dot{q}}_{1i} \right) \cdot u_{(J_1 + j + 2)}\\&\quad\quad + \,\left( {\dot{p}}^{\mathrm{HNB}}_{2\alpha i}q_{2i}-{\dot{p}}^{\mathrm{HNB}}_{1\alpha i}q_{1i} \right) u_{(J_1 + J_2 + 3)}, \end{aligned}$$

where \(u_{(m)}\) is a unit vector of dimension \(J_1+J_2+3\) with 1 in the mth component and 0 in others.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, B., Tang, L. et al. Are marginalized two-part models superior to non-marginalized two-part models for count data with excess zeroes? Estimation of marginal effects, model misspecification, and model selection. Health Serv Outcomes Res Method 18, 175–214 (2018). https://doi.org/10.1007/s10742-018-0183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10742-018-0183-6

Keywords

Navigation