Skip to main content
Log in

New stellar models generated using a quadratic equation of state

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We obtain new regular exact solutions to the field equations for uncharged relativistic stellar objects with vanishing pressure anisotropy. We assume a quadratic equation of state and a choice of measure of anisotropy and a metric function defining one of the gravitational potentials. In our exact models, we regain anisotropic and isotropic results generated by other researchers as a special case. It is interesting that our results are in agreement with Minkowski space–time and earlier Einstein models. The physical analysis of the plots reveals that the gravitational potentials and matter variables are well behaved in the stellar interior. Using our model, we generate finite relativistic stellar masses which are consistent with the astronomical objects previously found by other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K Schwarzschild, Sitz. Deut. Akad. Wiss. Math. Phys. 24, 424 (1916)

    Google Scholar 

  2. M Ishak, Texas Symposium on Relativistic Astrophysics (Geneva, 2015)

  3. M K Mak and T Harko, Eur. Phys. J. C 73, 2585 (2013)

    Article  ADS  Google Scholar 

  4. R Leijon, The Einstein field equations on semi-Riemannian manifolds and the Schwarzschild solution (Umea Universitet, Sweden, 2012)

  5. R L Bowers and E P T Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  6. K Dev and M Gleiser, Int. J. Mod. Phys. D 13, 1389 (2004)

    Article  ADS  Google Scholar 

  7. R Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  8. S Karmakar, S Mukherjee, R Sharma and S D Maharaj, Pramana – J. Phys. 68, 881 (2007)

    Article  ADS  Google Scholar 

  9. N Pant, N Pradhan and M H Murad, Astrophys. Space Sci. 355, 2156 (2014)

    Google Scholar 

  10. M K Mak and T Harko, Proc. R. Soc. Lond. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  11. H Panahi, R Monadi and I Eghdami, Chin. Phys. Lett. 33(7), 072601 (2016)

  12. L Herrera and W Barreto, Astrophysics 1, 2824 (2013)

    Google Scholar 

  13. M K Mak and T Harko, Chin. J. Astrophys. 2, 248 (2002)

    Article  ADS  Google Scholar 

  14. N Pant, N Pradhan and M Malaver, Int. J. Astrophys. Sci. 3, 1 (2015)

    Google Scholar 

  15. K Dev and M Gleiser, Gen. Rel. Grav. 35, 1435 (2003)

    Article  ADS  Google Scholar 

  16. M Kalam, F Rahaman, M Hossein and S Ray, Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  17. J M Sunzu, S D Maharaj and S Ray, Astrophys. Space Sci. 354, 517 (2014)

    Article  ADS  Google Scholar 

  18. M Malaver, Wirel. Sensor Netw. 36, 2392 (2016)

    Google Scholar 

  19. M H Murad and S Fatema, Astrophys. Space Sci. 350, 293 (2014)

    Article  ADS  Google Scholar 

  20. P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 361, 262 (2016)

    Article  ADS  Google Scholar 

  21. S D Maharaj and P Mafa Takisa, Gen. Rel. Grav. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  22. M Malaver, J. Mod. Phys. 1(1), 6 (2014)

    Google Scholar 

  23. D K Matondo and S D Maharaj, Astrophys. Space Sci. 361, 221 (2016)

    Article  ADS  Google Scholar 

  24. S Thirukkanesh and F S Ragel, Pramana – J. Phys. 78(5), 687 (2012)

    Article  ADS  Google Scholar 

  25. M Spaans and J Silk, Astrophys. J. 538, 115 (2000)

    Article  ADS  Google Scholar 

  26. B Kinasiewicz and P Mach, Acta Phys. Pol. B 38, 39 (2007)

    ADS  Google Scholar 

  27. T Harko and M K Mak, Astrophys. Space Sci. 361, 1 (2016)

    Article  Google Scholar 

  28. J M Sunzu, Global J. Sci. Front. Res. 18, 1 (2018)

    Google Scholar 

  29. S Thirukkanesh and F C Ragel, Astrophys. Space Sci. 352, 743 (2014)

    Article  ADS  Google Scholar 

  30. M Malaver, Am. J. Astron. Astrophys. 1, 41 (2013)

    Article  Google Scholar 

  31. J M Sunzu and K A Mahali, Global J. Sci. Front. Res. 18, 19 (2018)

    Google Scholar 

  32. P Bhar, M Govender and R Sharma, Pramana – J. Phys. 90: 5 (2018)

    Article  ADS  Google Scholar 

  33. A Das, A Bannerjee, S Chakraborty and S Pan, Pramana – J. Phys. 90, 19 (2018)

    Article  ADS  Google Scholar 

  34. J M Sunzu and P Danford, Pramana – J. Phys. 89: 44 (2017)

    Article  ADS  Google Scholar 

  35. M Malaver, Wirel. Sensor Netw. 92, 327 (2018)

    Google Scholar 

  36. M Esculpi and E Aloma, Eur. Phys. J. C 67, 521 (2010)

    Article  ADS  Google Scholar 

  37. R Sharma and S D Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    Article  ADS  Google Scholar 

  38. T Harko and K S Cheng, Phys. Lett. A 266, 249 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. H Sotani, K Kohri and T Harada, Phys. Rev. D 69, 084008 (2004)

    Article  ADS  Google Scholar 

  40. P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 343, 569 (2013)

    Article  ADS  Google Scholar 

  41. S Thirukkanesh and S D Maharaj, Class. Quantum Grav. 25, 235001 (2008)

    Article  ADS  Google Scholar 

  42. T Feroze and A A Siddiqui, Gen. Rel. Grav. 43, 1025 (2011)

    Article  ADS  Google Scholar 

  43. S A Ngubelanga, S D Maharaj and S Ray, Astrophys. Space Sci. 357, 74 (2015)

    Article  ADS  Google Scholar 

  44. M Malaver, Front. Math. Appl. 1, 9 (2014)

    Google Scholar 

  45. M C Durgapal and R Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  46. A Krasinski, Inhomogeneous cosmological models (Cambridge University Press, Cambridge, UK, 1997)

    Book  Google Scholar 

  47. J M Sunzu, S D Maharaj and S Ray, Astrophys. Space Sci. 352, 719 (2014)

    Article  ADS  Google Scholar 

  48. S D Maharaj, J M Sunzu, and S Ray, Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  49. P H Chavanis and T Harko, Astrophys. Space Sci. 361, 1 (2016)

    Article  Google Scholar 

  50. J M Sunzu, New models for quark stars with charge and anisotropy, Ph.D. thesis (University of KwaZulu-Natal, Durban, South Africa, 2014)

  51. M K Mak and T Harko, Int. J. Mod. Phys. D 13, 149 (2004)

    Article  ADS  Google Scholar 

  52. P C C Freire, C G Bassa, N Wex and I H Stairs, Mon. Not. R. Astron. Soc. 412, 2763 (2011)

    Article  ADS  Google Scholar 

  53. R P Negreiros, F Weber, M Malheiro and V Usov, Phys. Rev. D 80, 083006 (2009)

    Article  ADS  Google Scholar 

  54. M Dey, I Bombaci, J Dey, S Ray and B C Samanta, Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  55. T Güver, F Ozel, A Cabrera-Lavers and P Wroblewski, Astrophys. J. 712, 964 (2010)

    Article  ADS  Google Scholar 

  56. T Güver, P Wroblewski, L Camarota and F Ozel, Astrophys. J. 719, 1807 (2010)

    Article  ADS  Google Scholar 

  57. T Gangopadhyay, S Ray, X D Lix, J Dey and M Dey, Mon. Not. R. Astron. Soc. 431(4), 3216 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Dodoma for providing conducive environment, resources and other research facilities. Secondly, Mashiku would like to thank the District Executive Director at Kwimba District in Mwanza region for providing a two-year study leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefta M Sunzu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunzu, J.M., Thomas, M. New stellar models generated using a quadratic equation of state. Pramana - J Phys 91, 75 (2018). https://doi.org/10.1007/s12043-018-1650-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1650-x

Keywords

PACS Nos

Navigation