Skip to main content

Advertisement

Log in

PPC-based reactive hot melt polyurethane adhesive (RHMPA)—Efficient glues for multiple types of substrates

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Tens of billion metric tons of anthropogenic CO2 discharged from the burning of fossil fuels lead to an enormous environmental and resource burden. It is charming to transform CO2 to desirable, economical chemicals and materials. Poly(propylene carbonate) (PPC) is an emerging CO2-based material. Herein, we report the design, synthesis and characterization of the reactive hot melt polyurethane adhesive (RHMPA) based on PPC polyol. The resultant RHMPAs exhibit good adhesion properties to multiple substrates including plastics (PC, PMMA, ABS) and metals (aluminium, steel), which is comparable to or even better than conventional RHMPAs prepared from petro-based polyol. Furthermore, the PPC-based RHMPAs have tunable mechanical properties, and are thermally stable in the typical working range of bonding process (up to 270 °C). The study is expected to expand the applications of PPC and provide a new type of CO2-based renewable and eco-friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The International Energy Outlook 2016 (IEO2016), U.S. Energy Information Administration (EIA), 2016, http://www.eia.gov/forecasts/ieo/.

    Google Scholar 

  2. Kumar, S.; Wani, M. Y.; Arranja, C. T.; de A.e Silva, J.; Avula, B.; Sobral, A. J. F. N. Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. J. Mater. Chem. A 2015, 3, 19615–19637.

    Article  CAS  Google Scholar 

  3. Lu, X. B.; Darensbourg, D. J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 2012, 41, 1462–1484.

    Article  CAS  Google Scholar 

  4. Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 2011, 47, 141–163.

    Article  CAS  Google Scholar 

  5. Chen, G. Q.; Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012, 112, 2082–2099.

    Article  CAS  Google Scholar 

  6. Trott, G.; Saini, P. K.; Williams, C. K. Catalysts for CO2/epoxide ring-opening copolymerization. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, DOI: 10.1098/rsta.2015.0085.

    Article  Google Scholar 

  7. Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M. A.; Müller, T. E.; Leitner, W.; Gürtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870.

    Article  CAS  Google Scholar 

  8. Zhang, W.; Lu, L.; Cheng, Y.; Xu, N.; Pan, L.; Lin, Q.; Wang, Y. Clean and rapid synthesis of double metal cyanide complexes using mechanochemistry. Green Chem. 2011, 13, 2701–2703.

    Article  CAS  Google Scholar 

  9. Meng, Y. Z.; Wan, W.; Xiao, M.; Hay, A. S. Synthesis of metallophthalocyanine end-capped polymers and their catalytic activity for the copolymerization of CO2 and propylene oxide. Green Chem. 2004, 6, 249–253.

    Article  CAS  Google Scholar 

  10. Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y. J.; Peng, X. J.; Zhang, Z. C.; Li, B. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc. 2006, 128, 1664–1674.

    Article  CAS  Google Scholar 

  11. Wang, J.; Zhang, H.; Miao, Y.; Qiao, L.; Wang, X.; Wang, F. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem. 2016, 18, 524–530.

    Article  Google Scholar 

  12. von der Assen, N.; Bardow, A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem. 2014, 16, 3272–3280.

    Article  Google Scholar 

  13. Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. B 1969, 7, 287–292.

    Article  CAS  Google Scholar 

  14. Darensbourg, D. J.; Wilson, S. J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem. 2012, 14, 2665–2671.

    Article  CAS  Google Scholar 

  15. Lu, X. L.; Du, F. G.; Ge, X. C.; Xiao, M.; Meng, Y. Z. Biodegradability and thermal stability of poly(propylene carbonate)/starch composites. J. Biomed. Mater. Res. A 2006, 77, 653–658.

    Article  CAS  Google Scholar 

  16. Allen, S. D., 2012, U.S. Pat., 8,748,555.

    Google Scholar 

  17. Zhong, X.; Dehghani, F. Fabrication of biomimetic poly(propylene carbonate) scaffolds by using carbon dioxide as a solvent, monomer and foaming agent. Green Chem. 2012, 14, 2523–2533.

    Article  CAS  Google Scholar 

  18. Kim, G.; Ree, M.; Kim, H.; Kim, I. J.; Kim, J. R.; Lee, J. I. Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol. Res. 2008, 16, 473–480.

    Article  CAS  Google Scholar 

  19. Jiang, C., Zheng, H. D., Zhang, M.; Zhu, Y. W., 2015, CN Pat., 104,693,773.

    Google Scholar 

  20. Chen, Y.; Liu, Z.; Han, S.; Han, J.; Jiang, D. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J. Appl. Polym. Sci. 2016, 133, DOI: 10.1002/app.43667.

    Google Scholar 

  21. Jiang, W., Cui, X. H.; Cui, J., 2016, CN Pat., 105,802,330.

    Google Scholar 

  22. Taherimehr, M.; Pescarmona, P. P. Green polycarbonates prepared by the copolymerization of CO2 with epoxides. J. Appl. Polym. Sci. 2014, 131, DOI: 10.1002/app.41141.

    Google Scholar 

  23. Waites, P. Moisture-curing reactive polyurethane hot-melt adhesives. Pigm. Resin Technol. 1997, 26, 300–303.

    Article  CAS  Google Scholar 

  24. Tang, Q.; He, J.; Yang, R.; Ai, Q. Study of the synthesis and bonding properties of reactive hot-melt polyurethane adhesive. J. Appl. Polym. Sci. 2013, 128, 2152–2161.

    CAS  Google Scholar 

  25. Kim, T. K.; Kim, B. K.; Kim, Y. S.; Cho, Y. L.; Lee, S. Y.; Cho, Y. B.; Kim, J. H.; Jeong, H. M. The properties of reactive hot melt polyurethane adhesives modified with novel thermoplastic polyurethanes. J. Appl. Polym. Sci. 2009, 114, 1169–1175.

    Article  CAS  Google Scholar 

  26. Jung, J. S.; Kim, J. H.; Kim, M. S.; Jeong, H. M.; Kim, Y. S.; Kim, T. K.; Hwang, J. M.; Lee, S. Y.; Cho, Y. L. Properties of reactive hot melt polyurethane adhesives with acrylic polymer or macromonomer modifications. J. Appl. Polym. Sci. 2008, 109, 1757–1763.

    Article  CAS  Google Scholar 

  27. Cui, Y. J.; Hong, L.; Wang, X. L.; Tang, X. Z. Evaluation of the cure kinetics of isocyanate reactive hot-melt adhesives with differential scanning calorimetry. J. Appl. Polym. Sci. 2003, 89, 2708–2713.

    Article  CAS  Google Scholar 

  28. Comyn, J.; Brady, F.; Dust, R. A.; Graham, M.; Haward, A. Mechanism of moisture-cure of isocyanate reactive hot melt adhesives. Int. J. Adhes. Adhes. 1998, 18, 51–60.

    Article  CAS  Google Scholar 

  29. Cui, Y. J.; Chen, D. H.; Wang, X. L.; Tang, X. Z. Crystalline structure in isocyanate reactive hot melt adhesives. Int. J. Adhes. Adhes. 2002, 22, 317–322.

    Article  CAS  Google Scholar 

  30. Cho, Y. B.; Jeong, H. M.; Kim, B. K. Reactive hot melt polyurethane adhesives modified by acrylic copolymer nanocomposites. Macromol. Res. 2009, 17, 879–885.

    Article  CAS  Google Scholar 

  31. Kim, T. K.; Kim, B. K.; Kim, Y. S.; Cho, Y. L.; Lee, S. Y.; Cho, Y. B.; Jeong, H. M. The Properties of reactive hot melt polyurethane adhesives: effects of molecular weight and reactive organoclay. Polym-Plast Technol 2009, 48, 932–938.

    Article  Google Scholar 

  32. Xu, Y.; Petrovic, Z.; Das, S.; Wilkes, G. L. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 2008, 49, 4248–4258.

    Article  CAS  Google Scholar 

  33. Kultys, A.; Rogulska, M.; Głuchowska, H. The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polym. Int. 2011, 60, 652–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574019, 21304015), the Fundamental Research Funds for the Central Universities and the DHU Distinguished Young Professor Program (No. B201303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Ling Qing or Zheng-Wei You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZH., Huang, JQ., Sun, LJ. et al. PPC-based reactive hot melt polyurethane adhesive (RHMPA)—Efficient glues for multiple types of substrates. Chin J Polym Sci 36, 58–64 (2018). https://doi.org/10.1007/s10118-018-2011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2011-4

Keywords

Navigation