Skip to main content

Minigenome Systems for Filoviruses

  • Protocol
  • First Online:
Hemorrhagic Fever Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1604))

Abstract

Filoviruses are among the most pathogenic viruses known to man, and work with live viruses is restricted to maximum containment laboratories. In order to study individual aspects of the virus life cycle outside of maximum containment laboratories, life cycle modeling systems have been established, which use reporter-encoding miniature versions of the viral genome called minigenomes. With basic minigenome systems viral genome replication and transcription can be studied, whereas more advanced systems also allow us to model other aspects of the virus life cycle outside of a maximum containment laboratory. These systems, therefore, represent powerful tools to study the biology of filoviruses, and for the screening and development of antivirals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendoza EJ, Qiu X, Kobinger GP (2016) Progression of Ebola therapeutics during the 2014-2015 outbreak. Trends Mol Med 22(2):164–173. doi:10.1016/j.molmed.2015.12.005

    Article  PubMed  Google Scholar 

  2. Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72(11):8756–8764

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antivir Res 91(2):195–208. doi:10.1016/j.antiviral.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R (2005) RNA polymerase I-driven minigenome system for Ebola viruses. J Virol 79(7):4425–4433. doi:10.1128/JVI.79.7.4425-4433.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jasenosky LD, Neumann G, Kawaoka Y (2010) Minigenome-based reporter system suiTable for high-throughput screening of compounds able to inhibit ebolavirus replication and/or transcription. Antimicrob Agents Chemother 54(7):3007–3010. doi:10.1128/AAC.00138-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoenen T, Jung S, Herwig A, Groseth A, Becker S (2010) Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 403(1):56–66. doi:10.1016/j.virol.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  8. Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 76(17):8532–8539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Modrof J, Muhlberger E, Klenk HD, Becker S (2002) Phosphorylation of VP30 impairs Ebola virus transcription. J Biol Chem 277(36):33099–33104. doi:10.1074/jbc.M203775200

    Article  CAS  PubMed  Google Scholar 

  10. Biedenkopf N, Hartlieb B, Hoenen T, Becker S (2013) Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 288(16):11165–11174. doi:10.1074/jbc.M113.461285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neumann G, Watanabe S, Kawaoka Y (2009) Characterization of ebolavirus regulatory genomic regions. Virus Res 144(1–2):1–7. doi:10.1016/j.virusres.2009.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brauburger K, Boehmann Y, Tsuda Y, Hoenen T, Olejnik J, Schumann M, Ebihara H, Muhlberger E (2014) Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation. J Virol 88(21):12558–12571. doi:10.1128/JVI.01863-14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mehedi M, Hoenen T, Robertson S, Ricklefs S, Dolan MA, Taylor T, Falzarano D, Ebihara H, Porcella SF, Feldmann H (2013) Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure. PLoS Pathog 9(10):e1003677. doi:10.1371/journal.ppat.1003677

    Article  PubMed  PubMed Central  Google Scholar 

  14. Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A, Ebihara H, Feldmann H, Hoenen T (2014) A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 88(18):10511–10524. doi:10.1128/JVI.01272-14

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoenen T, Feldmann H (2014) Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev Anti-Infect Ther 12(10):1253–1263. doi:10.1586/14787210.2014.948848

    Article  CAS  PubMed  Google Scholar 

  16. Hoenen T, Watt A, Mora A, Feldmann H (2014) Modeling the lifecycle of Ebola virus under biosafety level 2 conditions with virus-like particles containing tetracistronic minigenomes. J Vis Exp 91:52381. doi:10.3791/52381

    Google Scholar 

  17. Martin A, Staeheli P, Schneider U (2006) RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 80(12):5708–5715. doi:10.1128/JVI.02389-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107(2):229–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Allison Groseth for critical reading of the manuscript, and to Marie Luisa Schmidt for technical help in refining some of the protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hoenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hoenen, T. (2018). Minigenome Systems for Filoviruses. In: Salvato, M. (eds) Hemorrhagic Fever Viruses. Methods in Molecular Biology, vol 1604. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6981-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6981-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6980-7

  • Online ISBN: 978-1-4939-6981-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics