Skip to main content
Log in

A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Nanostructures have drawn great attentions for functional device applications. Among the various techniques developed for fabricating arrayed nanostructures of functional materials, nanostructuring technique with porous anodic aluminum oxide (AAO) membrane as templates becomes more attractive owing to the superior geometrical characteristics and low-cost preparation process. In this mini review, we summarize our recent progress about functional nanostructuring based on perfectly-ordered AAO membrane to prepare perfectly-ordered nanostructure arrays of functional materials toward constructing high-performance energy conversion and storage devices. By employing the perfectly-ordered AAO membrane as templates, arrayed nanostructures in the form of nanodot, nanorod, nanotube and nanopore have been synthesized over a large area. These as-obtained nanostructure arrays have large specific surface area, high regularity, large-scale implementation, and tunable nanoscale features. All these advanced features enable them to be of great advantage for the performance improvement of energy conversion and storage devices, including photoelectrochemical water splitting cells, supercapacitors, and batteries, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dincer I. Renewable energy and sustainable development: A crucial review. Renewable & Sustainable Energy Reviews, 2000, 4(2): 157–175

    Article  Google Scholar 

  2. Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Applied Materials & Interfaces, 2014, 6(18): 16082–16090

    Article  CAS  Google Scholar 

  3. Aricò A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

    Article  CAS  PubMed  Google Scholar 

  4. Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008, 20(15): 2878–2887

    Article  Google Scholar 

  5. Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J G. Oriented nanostructures for energy conversion and storage. ChemSusChem, 2008, 1(8–9): 676–697

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42 (7): 3127–3171

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8(11): 7047–7053

    Article  CAS  Google Scholar 

  8. Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yang D, Yao X. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small, 2015, 12(10): 1295–1301

    Article  CAS  Google Scholar 

  9. Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188

    Google Scholar 

  10. Xu Y, Zhou M, Lei Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Advanced Energy Materials, 2016, 6(10): 1502514

    Article  CAS  Google Scholar 

  11. Wen L, Zhou M, Wang C, Mi Y, Lei Y. Nanoengineering energy conversion and storage devices via atomic layer deposition. Advanced Energy Materials, 2016, 6(23): 1600468

    Article  CAS  Google Scholar 

  12. Zhou M, Xu Y, Xiang J, Wang C, Liang L, Wen L, Fang Y, Mi Y, Lei Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Advanced Energy Materials, 2016, 6(23): 1600448

    Article  CAS  Google Scholar 

  13. Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428

    Article  CAS  PubMed  Google Scholar 

  14. Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168

    Article  CAS  PubMed  Google Scholar 

  15. Yang S, Lapsley M I, Cao B, Zhao C, Zhao Y, Hao Q, Kiraly B, Scott J, Li W, Wang L, Lei Y, et al. Large-scale fabrication of threedimensional surface patterns using template-defined electrochemical deposition. Advanced Functional Materials, 2013, 23(6): 720–730

    Article  CAS  Google Scholar 

  16. Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066

    Article  CAS  Google Scholar 

  17. Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106

    Article  CAS  Google Scholar 

  18. Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56

    Article  CAS  Google Scholar 

  19. Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5: 3960

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012

    Article  Google Scholar 

  21. Lei Y, Yang S, Wu M, Wilde G. Surface patterning using templates: Concept, properties and device applications. Chemical Society Reviews, 2011, 40(3): 1247–1258

    Article  CAS  PubMed  Google Scholar 

  22. Zhao H, Zhou M, Wen L, Lei Y. Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13: 790–813

    Article  CAS  Google Scholar 

  23. Al-Haddad A, Zhan Z, Wang C, Tarish S, Vellacheria R, Lei Y. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning. ACS Nano, 2015, 9(8): 8584–8591

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Cao D, Xu R, Qu S, Wang Z, Lei Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 2016, 19: 328–362

    Article  CAS  Google Scholar 

  25. Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Applied Materials & Interfaces, 2015, 7(24): 13322–13328

    Article  CAS  Google Scholar 

  26. Zhao S, Roberge H, Yelon A, Veres T. New application of AAO template: A mold for nanoring and nanocone arrays. Journal of the American Chemical Society, 2006, 128(38): 12352–12353

    Article  CAS  PubMed  Google Scholar 

  27. Liang J, Chik H, Yin A, Xu J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. Journal of Applied Physics, 2002, 91(4): 2544–2546

    Article  CAS  Google Scholar 

  28. Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659

    Article  CAS  PubMed  Google Scholar 

  29. Wen L, Xu R, Mi Y, Lei Y. Multiple nanostructures based on anodized aluminium oxide templates. Nature Nanotechnology, 2017, 12(3): 244–250

    Article  CAS  PubMed  Google Scholar 

  30. Lei Y. Functional nanostructuring for efficient energy conversion and storage. Advanced Energy Materials, 2016, 6(23): 1600461

    Article  CAS  Google Scholar 

  31. Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y, et al. A CdSe thin film: A versatile buffer layer for improving the performance of TiO2 nanorod array: PbS quantum dot solar cells. Nanoscale, 2016, 8(19): 10198–10204

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Hou H, Wang L, Xu R, Lei Y, Shen S, Yang D, Yang W. A transparent CdS@TiO2 nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9 (40): 15650–15657

    Article  CAS  PubMed  Google Scholar 

  33. Al-Haddad A, Wang Z, Zhou M, Tarish S, Vellacheri R, Lei Y. Constructing well-ordered CdTe/TiO2 Core/Shell nanowire arrays for solar energy conversion. Small, 2016, 12(40): 5538–5542

    Article  CAS  PubMed  Google Scholar 

  34. Chi D, Lu S, Xu R, Liu K, Cao D, Wen L, Mi Y, Wang Z, Lei Y, Qu S, et al. Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale, 2015, 7(37): 15251–15257

    Article  CAS  PubMed  Google Scholar 

  35. Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, Lei Y. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials, 2016, 6(1): 1501496

    Article  CAS  Google Scholar 

  36. Xu R, Wen L, Wang Z, Zhao H, Xu S, Mi Y, Xu Y, Sommerfeld M, Fang Y, Lei Y. Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical activity. ACS Nano, 2017, 11(7): 7382–7389

    Article  CAS  PubMed  Google Scholar 

  37. Zhan Z, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4): 3862–3868

    Article  CAS  PubMed  Google Scholar 

  38. Zhan Z, Xu R, Mi Y, Zhao H, Lei Y. Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route. ACS Nano, 2015, 9(4): 583–590

    Article  CAS  Google Scholar 

  39. Wang Z, Cao D, Wen L, Xu R, Obergfell M, Mi Y, Zhan Z, Nasori N, Demsar J, Lei Y. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nature Communications, 2016, 7: 10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107

    Article  CAS  Google Scholar 

  41. Xu Y, Zhou M, Zhang C, Wang C, Liang L, Fang Y, Wu M, Cheng L, Le Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38: 304–312

    Article  CAS  Google Scholar 

  42. Wang C, Fang Y, Xu Y, Liang L, Zhou M, Zhao H, Lei Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Advanced Functional Materials, 2016, 26(11): 1777–1786

    Article  CAS  Google Scholar 

  43. Zhou M, Xu Y, Wang C, Li Q, Xiang J, Liang L, Wu M, Zhao H, Lei Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524

    Article  CAS  Google Scholar 

  44. Liang L, Xu Y, Wen L, Li Y, Zhou M, Wang C, Zhao H, Kaiser U, Lei Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 2017, 10(9): 3189–3201

    Article  CAS  Google Scholar 

  45. Liang L, Xu Y, Li Y, Dong H, Zhou M, Zhao H, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(4): 1749–1755

    Article  CAS  Google Scholar 

  46. Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy & Environmental Science, 2015, 8(10): 2954–2962

    Article  CAS  Google Scholar 

  47. Xu Y, Zhou M, Wen L, Wang C, Zhao H, Mi Y, Liang L, Fu Q, Wu M, Lei Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chemistry of Materials, 2015, 27(12): 4274–4280

    Article  CAS  Google Scholar 

  48. Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237

    Article  CAS  Google Scholar 

  49. Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470

    Article  CAS  Google Scholar 

  50. Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70

    Article  CAS  Google Scholar 

  51. Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904

    Article  CAS  Google Scholar 

  52. Grote F, Wen L, Lei Y. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256: 37–42

    Article  CAS  Google Scholar 

  53. Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solidstate cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696

    Article  CAS  Google Scholar 

  54. Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1 (1): 1600012

    Article  CAS  Google Scholar 

  55. Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. Journal of Organic Chemistry, 2016, 81(22): 11035–11042

    Article  CAS  PubMed  Google Scholar 

  56. Nitti A, Bianchi G, Po R, Swager T M, Pasini D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic p-scaffolds. Journal of the American Chemical Society, 2017, 139(26): 8788–8791

    Article  CAS  PubMed  Google Scholar 

  57. Nitti A, Po R, Bianchi G, Pasini D. Direct arylation strategies in the synthesis of p-extended monomers for organic polymeric solar cells. Molecules (Basel, Switzerland), 2016, 22(1): 21

    Article  CAS  Google Scholar 

  58. Xu Y, Zhou M, Lei Y. Organic materials for rechargeable sodiumion batteries. Materials Today, 2018, 21(1): 60–78

    Article  CAS  Google Scholar 

  59. Wang C, Jiang C, Xu Y, Liang L, Zhou M, Jiang J, Singh S, Zhao H, Schober A, Lei Y. A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Advanced Materials, 2016, 28(41): 9182–9187

    Article  CAS  PubMed  Google Scholar 

  60. Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, Zhao H, Schober A, Lei Y. Extended p-conjugated system for fast-charge and-discharge sodium-ion batteries. Journal of the American Chemical Society, 2015, 137(8): 3124–3130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council (ThreeDsurface: 240144), European Research Council (HiNaPc: 737616), BMBF (ZIK-3DNanoDevice: 03Z1MN11), BMBF (Meta-ZIK-BioLithoMorphie: 03Z1M512), and German Research Foundation (DFG: LE 2249_4-1) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, L. & Lei, Y. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Front. Chem. Sci. Eng. 12, 481–493 (2018). https://doi.org/10.1007/s11705-018-1707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1707-x

Keywords

Navigation