Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

Abstract

Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures and electrochemical properties of layered oxides.
Fig. 2: Band structure of oxides and the anionic redox mechanism.
Fig. 3: Materials exploration pathway for Li-rich oxides.
Fig. 4: Practical challenges facing Li-rich cathodes.
Fig. 5: Benchmarking Li-rich NMC against NMCs.

Similar content being viewed by others

References

  1. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 6, 17110 (2017).

    Article  Google Scholar 

  3. "This is What We Die For": Human Rights Abuses in the Democratic Republic of the Congo Power the Global Trade in Cobalt (Amnesty International, 2016).

  4. Sathiya, M. et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013).

    Article  Google Scholar 

  5. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). Using a model compound derived from Li 2 RuO 3 , this work demonstrated reversible anionic redox as a viable approach for energy storage.

    Article  Google Scholar 

  6. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  Google Scholar 

  7. Zheng, J. et al. Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2016).

    Article  Google Scholar 

  8. Li, W., Song, B. & Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017).

    Article  Google Scholar 

  9. Hy, S. et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016).

    Article  Google Scholar 

  10. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the US Department of Energy’s ‘Deep Dive’ effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015). This review paper summarizes the research carried out at Argonne National Laboratory (USA) on understanding the fundamental mechanisms behind voltage fade and voltage hysteresis in Li-rich NMCs.

    Article  Google Scholar 

  11. Hong, J. et al. Review—Lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 162, A2447–A2467 (2015).

    Article  Google Scholar 

  12. Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).

    Article  Google Scholar 

  13. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  Google Scholar 

  14. Yabuuchi, N. Solid-state redox reaction of oxide ions for rechargeable batteries. Chem. Lett. 46, 412–422 (2017).

    Article  Google Scholar 

  15. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  Google Scholar 

  16. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  17. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  18. Lazzari, M. & Scrosati, B. A Cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127, 773–774 (1980).

    Article  Google Scholar 

  19. Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion. 69, 212–221 (1994).

    Article  Google Scholar 

  20. Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    Article  Google Scholar 

  21. Rouxel, J. Some solid state chemistry with holes: anion–cation redox competition in solids. Curr. Sci. 73, 31–39 (1997).This seminal review of anionic redox mechanisms in transition-metal chalcogenides demonstrates the versatile impact of such chemistry on structure, synthesis and properties.

    Google Scholar 

  22. Bichat, M.-P. et al. Redox-induced structural change in anode materials based on tetrahedral (MPn4)x transition metal pnictides. Chem. Mater. 16, 1002–1013 (2004).

    Article  Google Scholar 

  23. Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  Google Scholar 

  24. Amatucci, G. G. Investigations of the Structure, Electrochemistry, and Processing of the Layered Lithium Cobalt Dioxide Lithium Intercalation Host Material. PhD thesis, Rutgers Univ. (1995).

  25. Tarascon, J. M. et al. In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J. Solid State Chem. 147, 410–420 (1999).

    Article  Google Scholar 

  26. Aydinol, M. K. et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354 (1997).

    Article  Google Scholar 

  27. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694 (1998).

    Article  Google Scholar 

  28. Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526–2532 (2002).

    Article  Google Scholar 

  29. Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).

    Article  Google Scholar 

  30. Sarma, D. D., Sreedhar, K., Ganguly, P. & Rao, C. N. R. Photoemission study of YBa2Cu3O7 through the superconducting transition: evidence for oxygen dimerization. Phys. Rev. B 36, 2371–2373 (1987).

    Article  Google Scholar 

  31. Demourgues, A. et al. Additional oxygen ordering in ‘La2NiO4.25’ (La8Ni4O17): II. structural features. J. Solid State Chem. 106, 330–338 (1993).

    Article  Google Scholar 

  32. Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

  33. Kalyani, P., Chitra, S., Mohan, T. & Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 80, 103–106 (1999).

    Article  Google Scholar 

  34. Robertson, A. D. & Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984–1992 (2003).

    Article  Google Scholar 

  35. Yu, D. Y. W., Yanagida, K., Kato, Y. & Nakamura, H. Electrochemical activities in Li2MnO3. J. Electrochem. Soc. 156, A417–A424 (2009).

    Article  Google Scholar 

  36. Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).

  37. Thackeray, M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

    Article  Google Scholar 

  38. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006).

    Article  Google Scholar 

  39. Boulineau, A. et al. First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013).

    Article  Google Scholar 

  40. Tran, N. et al. Mechanisms associated with the ‘plateau’ observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem. Mater. 20, 4815–4825 (2008).

    Article  Google Scholar 

  41. Hy, S. et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    Article  Google Scholar 

  42. Muhammad, S. et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 21, 172–184 (2016).

    Article  Google Scholar 

  43. Yabuuchi, N. et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011).

    Article  Google Scholar 

  44. Koga, H. et al. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250–258 (2013).

    Article  Google Scholar 

  45. Koga, H. et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700–5709 (2014).

  46. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). This work demonstrated the reversibility of anionic redox in Li-rich NMC, notably by experimentally showing that the amount of oxygen release was much less than previously believed.

    Article  Google Scholar 

  47. Oishi, M. et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 276, 89–94 (2015).

    Article  Google Scholar 

  48. Foix, D. et al. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C 120, 862–874 (2016).

    Article  Google Scholar 

  49. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017). This work proved redox reactivity of bulk lattice oxygen in Li-rich NMC using hard-XPS and further correlated it with the issues of hysteresis and sluggish kinetics.

    Article  Google Scholar 

  50. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017). This work proved redox reactivity of bulk lattice oxygen in Li-rich NMC using STXM and further correlated it with cation migration to explain voltage hysteresis.

    Article  Google Scholar 

  51. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). This work provided the theoretical rationale for understanding the anionic redox activity in different types of structures.

    Article  Google Scholar 

  52. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Env. Sci. 9, 984–991 (2016). This work provided the theoretical rationale for understanding the reversible versus irreversible anionic redox activity in layered oxides.

    Article  Google Scholar 

  53. Xie, Y., Saubanère, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Env. Sci 10, 266–274 (2017).

    Article  Google Scholar 

  54. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  Google Scholar 

  55. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). This work directly imaged the structural consequence of anionic redox activity, that is, O–O dimerization, in a model compound based on Li2IrO3.

    Article  Google Scholar 

  56. Li, B. et al. Understanding the stability for Li-rich layered oxide Li2RuO3 cathode. Adv. Funct. Mater. 26, 1330–1337 (2016).

    Article  Google Scholar 

  57. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    Article  Google Scholar 

  58. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  Google Scholar 

  59. Strehle, B. et al. The role of oxygen release from Li-and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017).

    Article  Google Scholar 

  60. McCalla, E. et al. Reversible Li-intercalation through oxygen reactivity in Li-rich Li–Fe–Te oxide materials. J. Electrochem. Soc. 162, A1341–A1351 (2015).

    Article  Google Scholar 

  61. McCalla, E. et al. Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6. J. Am. Chem. Soc. 137, 4804–4814 (2015).

    Article  Google Scholar 

  62. Assat, G. et al. Decoupling cationic–anionic redox processes in a model Li-rich cathode via Operando X-ray absorption spectroscopy. Chem. Mater. 29, 9714–9724 (2017).

    Article  Google Scholar 

  63. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  Google Scholar 

  64. Kim, S. et al. Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond. Energy Environ. Sci. 10, 2201–2211 (2017).

    Article  Google Scholar 

  65. Qiu, B. et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  Google Scholar 

  66. Wu, Z. Y. et al. Sulfur K-edge X-ray-absorption study of the charge transfer upon lithium intercalation into titanium disulfide. Phys. Rev. Lett. 77, 2101–2104 (1996).

    Article  Google Scholar 

  67. Lindic, M. H. et al. XPS investigations of TiOySz amorphous thin films used as positive electrode in lithium microbatteries. Solid State Ion. 176, 1529–1537 (2005).

    Article  Google Scholar 

  68. Jobic, S. et al. Crystal and electronic band structure of IrTe2: evidence of anionic bonds in a CdI2-like arrangement. Z. Anorg. Allg. Chem. 598, 199–215 (1991).

  69. Yabuuchi, N. et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014).

    Article  Google Scholar 

  70. Talaie, E., Kim, S. Y., Chen, N. & Nazar, L. F. Structural evolution and redox processes involved in the electrochemical cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chem. Mater. 29, 6684–6697 2017).

    Article  Google Scholar 

  71. Zhao, C. et al. Review on anionic redox for high-capacity lithium- and sodium-ion batteries. J. Phys. Appl. Phys. 50, 183001 (2017).

    Article  Google Scholar 

  72. Qiu, B. et al. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem. Mater. 29, 908–915 (2017).

    Article  Google Scholar 

  73. Sathiya, M. et al. Li4NiTeO6 as a positive electrode for Li-ion batteries. Chem. Commun. 49, 11376–11378 (2013).

    Article  Google Scholar 

  74. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2014).

    Article  Google Scholar 

  75. Moore, G. J., Johnson, C. S. & Thackeray, M. M. The electrochemical behavior of xLiNiO2·(1−x)Li2RuO3 and Li2Ru1−yZryO3 electrodes in lithium cells. J. Power Sources 119, 216–220 (2003).

    Article  Google Scholar 

  76. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  Google Scholar 

  77. Glazier, S. L. et al. Characterization of disordered Li(1+x)Ti2xFe(1–3x)O2 as positive electrode materials in Li-ion batteries using percolation theory. Chem. Mater. 27, 7751–7756 (2015).

    Article  Google Scholar 

  78. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

  79. Yabuuchi, N. et al. Synthesis and electrochemical properties of Li4MoO5–NiO binary system as positive electrode materials for rechargeable lithium batteries. Chem. Mater. 28, 416–419 (2016).

    Article  Google Scholar 

  80. Matsuhara, T. et al. Synthesis and electrode performance of Li4MoO5–LiFeO2 binary system as positive electrode materials for rechargeable lithium batteries. Electrochemistry 84, 797–801 (2016).

    Article  Google Scholar 

  81. Lee, J. et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ. Sci. 8, 3255–3265 (2015).

    Article  Google Scholar 

  82. Freire, M. et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    Article  Google Scholar 

  83. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  Google Scholar 

  84. Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    Article  Google Scholar 

  85. Jacquet, Q. et al. The Li3RuyNb1–yO4 (0 ≤ y ≤ 1) system: structural diversity and Li insertion and extraction capabilities. Chem. Mater. 29, 5331–5343 (2017).

    Article  Google Scholar 

  86. Yamada, A. et al. A new sealed lithium-peroxide battery with a Co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 4, 5684 (2014).

    Google Scholar 

  87. Zhu, Z. et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016).

    Article  Google Scholar 

  88. Croy, J. R. et al. Examining hysteresis in composite xLi2MnO3·(1 – x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013).

    Article  Google Scholar 

  89. Wu, Y. et al. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. J. Mater. Chem. A 3, 5385–5391 (2015).

    Article  Google Scholar 

  90. Dees, D. W. et al. Electrochemical modeling and performance of a lithium- and manganese-rich layered transition-metal oxide positive electrode. J. Electrochem. Soc. 162, A559–A572 (2015).

    Article  Google Scholar 

  91. Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

    Article  Google Scholar 

  92. Dogan, F. et al. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328–2335 (2015).

    Article  Google Scholar 

  93. Rinaldo, S. G. et al. Physical theory of voltage fade in lithium-and manganese-rich transition metal oxides. J. Electrochem. Soc. 162, A897–A904 (2015).

    Article  Google Scholar 

  94. Konishi, H. et al. Origin of hysteresis between charge and discharge processes in lithium-rich layer-structured cathode material for lithium-ion battery. J. Power Sources 298, 144–149 (2015).

    Article  Google Scholar 

  95. Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Editors’ choice—Practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163, A2965–A2976 (2016).

    Article  Google Scholar 

  96. Bettge, M. et al. Voltage fade of layered oxides: its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046–A2055 (2013).

    Article  Google Scholar 

  97. Kim, S. et al. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 7, 13598 (2016).

    Article  Google Scholar 

  98. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    Article  Google Scholar 

  99. Myung, S.-T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2, 196–223 (2016).

    Article  Google Scholar 

  100. Yoon, C. S. et al. High-energy Ni-rich Li[NixCoyMn1–xy]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 29, 10436–10445 (2017).

  101. Martha, S. K., Nanda, J., Veith, G. M. & Dudney, N. J. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 199, 220–226 (2012).

    Article  Google Scholar 

  102. Zheng, J. et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 160, A2212–A2219 (2013).

    Article  Google Scholar 

  103. Konishi, H., Gunji, A., Feng, X. & Furutsuki, S. Effect of transition metal composition on electrochemical performance of nickel–manganese-based lithium-rich layer-structured cathode materials in lithium-ion batteries. J. Solid State Chem. 249, 80–86 (2017).

    Article  Google Scholar 

  104. Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article  Google Scholar 

  105. Zheng, J., Kan, W. H. & Manthiram, A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8–xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 6926–6934 (2015).

    Article  Google Scholar 

  106. Woo, S.-U. et al. Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials. J. Electrochem. Soc. 154, A1005–A1009 (2007).

  107. Lin, F. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123–13186 (2017).

    Article  Google Scholar 

  108. Li, Q. et al. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. Appl. Phys. 49, 413003 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.-L. Doublet and M. Saubanère for valuable discussions on the theoretical aspects, and A. Grimaud, A. Abakumov, J. Vergnet, G. Rousse, A Pérez, Q. Jacquet, M. Sathiya, P. Pearce and A. Georges for sharing their knowledge and comments. J.-M.T. and G.A. acknowledge the funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assat, G., Tarascon, JM. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0097-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing