Skip to main content

Advertisement

Log in

Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In the present study, the tube well water quality and the associated health risks, emphasizing on arsenic contamination, were investigated in rural and urban samples from Tehsil Mailsi located in Punjab, Pakistan. Arsenic concentrations (μg/L) were ranged from 12 to 448.5 and which exceeded the WHO recommended limit (10 μg/L) in all cases. The calculated average daily dose (3.3 × 10−0.4 to 1.2 × 10−0.2 mg/kg day) and hazard quotient (1.1–40) reflected the potential health risk to local population due to tube well water consumption as drinking purpose. Sodium percent (Na%), sodium absorption ratio, residual sodium carbonate, Kelly’s index and magnesium absorption ratio were also determined to assess the suitability of tube well water for irrigation purpose. The resulting piper plot revealed the Na–Ca–HCO3 type water chemistry of the area and generally alkaline environment. The spatial distribution of arsenic in the tube well waters pinpoints the significant contribution of anthropogenic activities to arsenic pollution. Nevertheless, different statistical tools, including principal component analysis, hierarchical cluster analysis and correlation matrices, revealed the contribution of both natural and anthropogenic activities and alkaline type of aquifers toward the high level of arsenic contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, S. R., Sabir, S. M., Ahmad, S. D., Boligon, A. A., & Athayde, M. L. (2014). Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum of ficinarum). Food Chemistry, 147, 10–16.

    Article  CAS  Google Scholar 

  • Adhikary, P. P., Chandrasekharan, H., Chakraborty, D., & Kamble, K. (2010). Assessment of groundwater pollution in West Delhi, India using geo statistical approach. Environmental Monitoring and Assessment, 167, 599–615.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., & Hasan, M. A. (2004). Arsenic contamination in groundwater of alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • Alamdar, A., Eqani, S. A. M. A. S., Ali, S. W., Sohail, M., Bhowmik, A. K., Subhani, M., et al. (2016). Human Arsenic exposure via dust across different ecological zones throughout the Pakistan. Ecotoxicology and Environmental Safety, 126, 219–227.

    Article  CAS  Google Scholar 

  • Alloway, W. H. (1970). Agronomic control over the environmental cycling of trace elements. Advances in Agronomy, 20, 235–274.

    Article  Google Scholar 

  • Amini, M., et al. (2008). Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental Science and Technology, 42, 3669–3675.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater, American Public Health Association Washington D.C., Ed.19.

  • Arain, M., Kazi, T., Baig, J., Jamali, M., Afridi, H., Shah, A., et al. (2009). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food and Chemical Toxicology, 47, 242–248.

    Article  CAS  Google Scholar 

  • Baig, D. N., Bukhari, D., & Shakoori, A. R. (2009a). Cry genes profiling and the toxicity of isolates of Bacillus thuringiensis from soil samples against American bollworm, Helicoverpaarmigera. Journal of Applied Microbiology, 109(6), 1967–1978.

    Article  Google Scholar 

  • Baig, J. A., Kazi, T. G., Arain, M. B., Afridi, H. I., Kandhro, G. A., Sarfraz, R. A., et al. (2009b). Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. Journal of Hazardous Material, 166, 662–669.

    Article  CAS  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Hung Viet, P., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2), 413–425.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science and Technology, 35, 2621–2632.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Broms, S., Fogelstorm, J., & Jacks, G. (2006). Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. Managing Arsenic in the Environment: From Soil to Human Health (pp. 95–115). Melbourne: CSIRO Publishing.

    Google Scholar 

  • Bhowmik, A. V., et al. (2015). Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Science of Total Environment, 538, 306–316.

    Article  CAS  Google Scholar 

  • Briscoe, J., & Qamar, U. (2007). Pakistan’s Water economy running dry. Karachi: Oxford University Press. Commissioned by World Bank.

    Google Scholar 

  • Busbee, M. W., Kocar, B. D., & Benner, S. G. (2009). Irrigation produces elevated arsenic in the underlying groundwater of a semi-arid basin in Southwestern Idaho. Applied Geochemistry, 24, 843–859.

    Article  CAS  Google Scholar 

  • Campos, V. (2002). Arsenic in groundwater affected by phosphate fertilizers at Sao Paulo, Brazil. Environmental Geology, 42, 83–87.

    Article  CAS  Google Scholar 

  • Caylak, E., & Halifeoglu, I. (2010). Cocuk Sagligive Hastaliklari Dergisi (in Turkish), 53(2), 159–173.

    Google Scholar 

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.

    Article  Google Scholar 

  • Chae, G. T., Yun, S. T., Kim, K., & Mayer, B. (2006). Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea. Journal of Hydrology, 321, 326–343.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D., et al. (2002). Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta, 58, 3–22.

    Article  CAS  Google Scholar 

  • Chen, C. J., Chuang, Y. C., Lin, T. M., & Wu, H. Y. (1985). Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: High arsenic artesian well water and cancers. Cancer Research, 45, 5895–5899.

    CAS  Google Scholar 

  • Davenport, J., & Peryea, F. (1991). Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate. Water, Air, and Soil pollution, 57, 101–110.

    Article  Google Scholar 

  • DCR. (1998). District Census Report of Tehsil Mailsi. Population Census Organization, Pakistan. http://www.census.gov.pk/publications.php Accessed 10. 05. 10.

  • Emerson, W. W., & Bakker, A. C. (1973). The comparative effect of exchangeable Ca, Mg and Na on some soil physical properties of red brown earth sub soils. Australian Journal of Soil Research, 11, 151–157.

    Article  CAS  Google Scholar 

  • FAO. (1992). The use of saline waters for crop production. Irrigation and drainage paper 48. FAO, Rome.

  • Farooqi, A., Masuda, H., & Firdous, N. (2007a). Toxic fluoride and arsenic contaminated water in Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M., & Firdous, N. (2007b). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochemical Journal, 41(4), 213–234.

    Article  CAS  Google Scholar 

  • Farooqi, A., Yousafzai, M. A., & Jan, M. Q. (2007c). Hydro-geochemistry of the Indus Basin in Rahim Yar Khan District, Central Pakistan. Journal of the Chemical Society of Pakistan, 29, 525–537.

    Google Scholar 

  • Fatmi, Z., Azam, I., Ahmed, F., Kazi, A., Gill, A. B., Kadir, M. M., et al. (2009). Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Environmental Research, 109, 575–581.

    Article  CAS  Google Scholar 

  • Fujii, R., & Swain,W.C. (1995). Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California. US Geol. Surv. Water-Resour. Investig. Rep. 95–4048.

  • Geleijnse, J. M., Kok, F. J., & Grobbee, D. E. (2003). Blood pressure response to changes in sodium and potassium intake: A met regression analysis of randomized trials. Journal of Human Hypertension, 17, 471–480.

    Article  CAS  Google Scholar 

  • Greenman, D.V., Swarzenski, W.V., & Benet, D.G. (1967). Groundwater hydrology of Punjab, West Pakistan with emphasis on problems caused by canal irrigation. USGS Water Supply paper, 1608(H).

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Halim, M. A., Ratan, K. M., Rasul, G., Hirosiro, Y., Sasaki, K., Shimada, J., et al. (2009). Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: geochemical and hydrological implications. Environmental Geology, 58, 73–84.

    Article  CAS  Google Scholar 

  • Hudak, P. F. (2000). Distribution and sources of arsenic in the southern high plains aquifer, Texas, USA. Journal of Environmental Science and Health, A., 35, 899–913.

    Article  Google Scholar 

  • Islam, M. S., Ahmed, M. K., & Al-Mamun, M. H. (2014). Determination of heavy metals in fish and vegetables in Bangladesh and health implications. Human and Ecological Risk Assessment International Journal,. doi:10.1080/10807039.2014.950172.

    Google Scholar 

  • Jones, B. F., Naftz, D. L., Spencer, R. J., & Oviatt, C. G. (2009). Geochemical evolution of great salt lake, Utah, USA. Aquatic Geochemistry, 15, 95–121.

    Article  CAS  Google Scholar 

  • Kahlown, M.A., Ashraf, M., Hussain, M., Salam, H.A., & Bhatti, A.Z. (2006). Impact assessment of sewerage and industrial effluents on water resources, soil, crops and human health in Faisalabad. Pakistan Council of Research in Water Resources Khyabane-Johar, H-8/1, Islamabad.

  • Karim, M. M. D. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34, 304–310.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Hug, S. J., Amman, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383, 128–140.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Katsoyiannis, A. I. (2006). Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. Environmental Monitoring and Assessment, 123(393), 406.

    Google Scholar 

  • Katsoyiannis, I. A., Mitrakas, M., & Zouboulis, A. I. (2015). Arsenic occurrence in Europe. Emphasis in Greece and description of the applied full scale treatment plants. Desalination and Water Treatment, 54, 2100–2107.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2006). Comparative evaluation of conventional and alternative methods for the removal of arsenic from contaminated groundwaters. Reviews Environmental Health, 21, 25–41.

    Article  CAS  Google Scholar 

  • Kavcar, P., Sofuoglub, A., & Sofuoglub, S. C. (2009). A health risk assessment for exposure to heavy metals via drinking water ingestion pathway. International Journal of Environmental Health, 212, 216–227.

    Article  CAS  Google Scholar 

  • Kelly, W.P. (1940). Permissible composition and concentration of irrigated waters. In: Proceedings of the ASCF66, pp 607.

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Khan, S., Shahnaz, M., Jehan, N., Rehman, S., Shah, M. T., & Din, I. (2012). Water quality and human health risk in Charsadda district, Pakistan. Journal of Cleaner Production, 10, 10–16.

    Google Scholar 

  • Lopez Pazos, S. A., Arias, A. C. R., Ospina, J. S., & Ceron, J. (2010). Activity of Bacillus thuringiensis hybrid protein against a lepidopteron and a coleopteran pest. FEMS Microbiology Letters, 302(2), 93–98.

    Article  CAS  Google Scholar 

  • Mahmood, S. N., Naeem, S., Siddiqui, I., & Khan, F. A. (1998). Studies on physico-chemical nature of ground water of Korangi/Landhi (Karachi). Journal of the Chemical Society of Pakistan, 19, 42–48.

    Google Scholar 

  • Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in effluents from textile industry in relation to soil and ground water. Journal of Hazardous Material, 137, 31–37.

    Article  CAS  Google Scholar 

  • Martin, A., Tomlin, R. R., & Arsello, B. M. (2000). Arsenic uptake in orchard trees: Implications for dendroanalysis. Chemosphere, 41, 635–637.

    Article  CAS  Google Scholar 

  • Moghaddam, A. A., & Fijani, E. (2008). Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environmental Geology, 56, 281–287.

    Article  Google Scholar 

  • Muhammad, S., Rashid, A., & Memon, K. S. (1996). Soil salinity sodicity and water logging in Soil Science (pp. 472–506). Pakistan: National Book Foundation Islamabad.

    Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2010). Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food and Chemical Toxicology, 48, 2855–2864.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, 334–343.

    Article  CAS  Google Scholar 

  • Naseem, M., Farooqi, A., Masih, D., & Anwar, M. (2001). Investigation of toxic elements in the ground water of Kalalanwala area near Lahore, Punjab, Pakistan. Proceedings of GEOSAS-III (pp. 23–27). Pakistan: Lahore.

    Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K. W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environmental International, 35, 466–472.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District Pakistan. Applied Geochemistry, 20, 55–68.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Suriano, J. M., & Gomez, P. (1989). Groundwater contamination with arsenic and other trace element sinan area of the Pampa, Province of Cordoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16.

    Article  CAS  Google Scholar 

  • Nimick, D. A. (1998). The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resources Research, 34, 3051–3067.

    Article  CAS  Google Scholar 

  • Patterson, R. A. (1994). On-site treatment and disposal of septic tank effluent. Ph. D.thesis, University of New England.

  • Piper, A. M. (1994). A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transaction, 25, 914–923.

    Article  Google Scholar 

  • Popovic, A., Djordjevic, D., & Polic, P. (2001). Trace and major element pollution originating from coal ash suspension and transport processes. Environment International, 26, 251–255.

    Article  CAS  Google Scholar 

  • Pradeep, J. K. (1998). Hydrogeology and quality of ground water around Hirapur, District Sagar. Journal of Pollution Research, 17(1), 91–94.

    Google Scholar 

  • Prosun, A. B., Mukherjee, J. G., & Nordqvist, S. (2002). Metal contamination at a wood preservation site: characterization and experimental studies on remediation. Science of the Total Environment, 36, 165–180.

    Google Scholar 

  • Ramkumar, T., Venkatramanan, S., Mary, I. A., Tamilselvi, M., & Ramesh, G. (2010). Hydrogeochemical quality of groundwater in Vedaraniyam Town, TamilNadu, India. Research Journal of Environmental and Earth Sciences, 2(1), 44–48.

    CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic in North America and Europe. In: Arsenic Pollution: A Global Synthesis, pp 387–454.

  • Reghunath, R., Murthy, T. R. J., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Research, 36, 2437–2442.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agriculture Handbook No. 60, U.S. Government Printing Office, Washington, D.C., USA.

  • Robertson, F. N. (1989). Arsenic in ground-water under oxidizing conditions, south-west United States. Environmental Geochemistry and Health, 11, 171–185.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8, 161–176.

    Article  CAS  Google Scholar 

  • Shah, M. T., Ara, J., Muhammad, S., Khan, S., & Tariq, S. (2012). Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohammed agency, northern Pakistan. Journal of Geochemical Exploration, 118, 60–67.

    Article  CAS  Google Scholar 

  • Shah, M. T., Begum, S., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramafic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental and Earth Sciences, 60(5), 1091–1102.

    Article  CAS  Google Scholar 

  • Shah, M. T., Hussain, S. S., & Akbar, H. M. (2000). Mineralogy, chemistry and genesis of the Proterozoic base metal deposits at the northern margin of the Indian plate in Besham area, Himalaya, northern Pakistan (pp. 11–57). Pakistan Museum of Natural History: Economic Geology of Pakistan.

    Google Scholar 

  • Sharma, A. K. (2006). Arsenic removal from water using naturally occurring iron, and the associated benefits on health in affected regions. Institute of Environment & Resources Technical University of Denmark, ISBN 87-91855-07-1.

  • Shyamala, R., Shanthi, M., & Lalitha, P. (2008). Physicochemical analysis of Bore well water samples of Telungupalayam area in Coimbatore district, Tamilnadu, India. E-Journal of Chemistry, 5, 924–929.

    Article  Google Scholar 

  • Singh, J. (2011). Water table falls alarmingly in Central Punjab, Water table in 9,058 sq km drops by over 20 metres, The Tribune, 1st Feb 2011 (cited on 1stFeb 2011).

  • Singh, V. K., Bikundia, D. S., Sarswat, A., & Mohan, D. (2012). Groundwater quality assessment in village LutfullapurNawada, Loni, District Ghaziabad, Uttar Pradesh, India. Environmental Monitoring and Assessment, 184, 4473–4488.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohon, D., Sinha, S., & Dalwani, R. (2004). Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural, and environmental quality in wastewater disposal area. Chemosphere, 55, 227–255.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Soltan, M. E. (1998). Characterization, classification, and evaluation of some groundwater samples in Upper Egypt. Chemosphere, 37, 735–745.

    Article  CAS  Google Scholar 

  • Stiff, H. A. J. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3(10), 15–17.

    Article  Google Scholar 

  • Sultana, N., Alimon, A. R., Haque, K. S., Sazili, A. Q., Yaakub, H., & Hossain, S. M. J. (2014). The effect of cutting interval on yield and nutrient composition of different plant fraction of Moringaoleifera tree. Journal of Food and Agriculture Environment, 12, 599–604.

    CAS  Google Scholar 

  • Szabolcs, I., & Darab, C.(1964). The influence of irrigation water of high sodium carbonate content of soils. In: Proceeding of 8th International Congress of ISSS, Trans, vol. II, pp 803–812.

  • Tasneem, M. A. (1999). Impact of agricultural and industrial activities on groundwater quality in Kasur Area. The Nucleus. Quarterly Journal of the Pakistan Atomic Energy Commission 36.

  • US-EPA. (2010). Risk-based concentration table.United State, Environmental Protection Agency, Philadelphia, Pa, and Washington, DC. http://www.epa.gov/reg3hwmd/risk/human/index.htm.

  • US-EPA. (2011). Exposure Factors Handbook.United States Environmental Protection Agency, Washington, DC.EPA/600/R-09/052F.

  • Welch, H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  CAS  Google Scholar 

  • WHO. (2008). Guidelines for drinking water quality. In: Recommendations. World Health Organization; 3rd ed., vol. 1, Geneva.

  • Woolson, E. A., Axley, J. H., & Kearney, P. C. (1971). The chemistry and phytotoxicity of arsenic in soils: I. contaminated field soils. Soil Science Society of America Journal, 35, 938–943.

    Article  Google Scholar 

  • Zhang, X., Wang, Q., Liu, Y., Wu, J., & Yu, M. (2011). Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environmental Monitoring and Assessment, 173, 17–27.

    Article  Google Scholar 

Download references

Acknowledgments

We are highly thankful to Geological Survey of Pakistan and Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, for technical support and research facilities, respectively. We are also thankful to Dr. Sajid Masood, Department of Plant Sciences, Quaid-I-Azam University, for technical review of the manuscript. We wish to thank people of Tehsil Mailsi visited, for their cooperation at the time of sampling.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abida Farooqi or Syed Ali Musstjab Akber Shah Eqani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, A., Xiao, T., Farooqi, A. et al. Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environ Geochem Health 39, 847–863 (2017). https://doi.org/10.1007/s10653-016-9855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9855-8

Keywords

Navigation