Skip to main content

Advertisement

Log in

Microwave drying kinetics of mussels (Mytilus edulis)

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Mussels (Mytilus edulis) can be consumed as an alternative food product for several meats, such as beef and fish, due to their high protein content. In this study, several microwave power levels (90, 180, 360, 600 and 800 W) were applied to Mytilus edulis to determine their effect on drying kinetics, rehydration characteristics and energy consumptions. The optimal drying times of 16, 5 and 2 min were determined for microwave power levels of 90, 180 and 360 W, respectively. However, at the microwave power levels of 600 and 800 W, the optimal drying times were 80 and 60 s, respectively. The experimental results indicate that the drying kinetics, rehydration characteristics and energy consumptions are slightly affected by the change in microwave power levels. Seven different thin-layer drying models that are widely used in the literature were applied to the experimental data. The results showed that the Weibull model best fits the experimental data (R 2: 0.998135–0.999929, χ 2: 0.000029–0.000401, and RMSE: 0.004172–0.018733) of the drying kinetics of Mytilus edulis. The effective moisture diffusivity was determined to be between 2.74 × 10−8 and 4.79 × 10−7 m2/s. Using a modified Arrhenius-type equation, the activation energy was found to be 95.131 kW/kg. The microwave power level of 360 W was found to be the most effective, considering the minimum energy consumption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Sterry, Collins Complete Guide to British Wildlife, ISBN 978-0-00-723683-1 (HarperCollins, 1997)

  2. FAO (Food and Agriculture Organization of the United Nations) (Fishery and Aquaculture Department, 2015). http://www.fao.org/fishery/statistics/en. Accessed 06 May 2015

  3. I. Doymaz, A.S. Kipcak, S. Piskin, Czech J. Food Sci. 33, 83 (2015)

    Article  Google Scholar 

  4. I. Doymaz, A.S. Kipcak, S. Piskin, Czech J. Food Sci. 33, 367 (2015)

    Article  Google Scholar 

  5. E. Demirhan, B. Özbek, J. Food Process. Preserv. 34, 476 (2010)

    Article  Google Scholar 

  6. S.J. Kowalski, J. Szadzińska, Dry. Technol. 32, 1310 (2014)

    Article  CAS  Google Scholar 

  7. M. Aghbashlo, M.H. Kianmehr, S. Khani, M. Ghasemi, Int. Agrophys. 23, 313 (2009)

    Google Scholar 

  8. E. Demirhan, B. Ozbek, Chem. Eng. Commun. 198, 957 (2011)

    Article  CAS  Google Scholar 

  9. S. Jena, H. Das, J. Food Eng. 79, 92 (2007)

    Article  Google Scholar 

  10. O. Corzo, N. Bracho, A. Pereira, A. Vásquez, LWT Food Sci. Technol. 41, 2023 (2008)

    Article  CAS  Google Scholar 

  11. I. Alibas, Int. J. Food Eng. 10, 69 (2014)

    Article  CAS  Google Scholar 

  12. G. Dadali, B. Ozbek, Int. J. Food Sci. Technol. 43, 1443 (2008)

    Article  CAS  Google Scholar 

  13. İ. Doymaz, J. Food Eng. 74, 370 (2006)

    Article  Google Scholar 

  14. M. Başlar, M. Kiliçli, O.S. Toker, O. Sağdiç, M. Arici, Innov. Food Sci. Emerg. Technol. 26, 182 (2014)

    Article  Google Scholar 

  15. A. Natharanakule, W. Kraiwanichkul, S. Soponronnarit, J. Food Eng. 80, 1023 (2007)

    Article  Google Scholar 

  16. P. Konieczny, J. Stangierski, J. Kijowski, Meat Sci. 76, 253 (2007)

    Article  CAS  Google Scholar 

  17. T. Ahmat, M. Barka, A.W. Aregba, D. Bruneau, J. Food Process. Preserv. 39, 2581 (2015)

    Article  CAS  Google Scholar 

  18. S. Simal, A. Femenia, J.A. Carcel, C. Rossello, J. Sci. Food Agric. 85, 425 (2005)

    Article  CAS  Google Scholar 

  19. P. Sa-Adchom, T. Swasdisevi, A. Nathakaranakule, S. Soponronnarit, J. Food Eng. 104, 499 (2011)

    Article  Google Scholar 

  20. O.P. Sobukola, S.O. Olatunde, Food Bioprod. Process. 89, 170 (2011)

    Article  Google Scholar 

  21. A. Vega-Gálvez, A. Ayala-Aponte, E. Notte, L. De La Fuente, R. Lemus-Mondaca, Dry. Technol. 26, 1610 (2008)

    Article  Google Scholar 

  22. C. Heilporn, B. Haut, F. Debaste, F.V.D. Pol, C. Boey, A. Nonclercq, Food Secur. 2, 71 (2010)

    Article  Google Scholar 

  23. D. Jain, P.B. Pathare, J. Food Eng. 78, 1315 (2007)

    Article  Google Scholar 

  24. L.A.A. Pinto, S. Tobinaga, Dry. Technol. 24, 509 (2006)

    Article  Google Scholar 

  25. J.O. Akinneye, I.A. Amoo, O.O. Bakare, Afr. J. Biotechnol. 9, 4369 (2010)

    CAS  Google Scholar 

  26. H. Darvishi, M. Azadbakht, A. Rezaeiasl, A. Farhang, J. Saudi Soc. Agric. Sci. 12, 121 (2013)

    Google Scholar 

  27. Z.H. Duan, L.N. Jiang, J.L. Wang, X.Y. Yu, T. Wang, Food Bioprod. Process. 89, 472 (2011)

    Article  Google Scholar 

  28. AOAC (Association of Official Analytical Chemists), Official Methods of Analysis of AOAC International, 16th edn. (AOAC International, Virginia, 1995)

    Google Scholar 

  29. S.M. Henderson, S. Pabis, J. Agric. Eng. Res. 6, 169 (1961)

    Google Scholar 

  30. C.Y. Wang, R.P. Singh, ASAE, Paper No:78-6505 (1978)

  31. J. Crank, Mathematics of Diffusion (Clarendon Press, Oxford, 1975)

    Google Scholar 

  32. L.M. Bal, A. Kar, S. Satya, S.N. Naik, Int. J. Food Sci. Technol. 45, 2321 (2010)

    Article  CAS  Google Scholar 

  33. I. Hammouda, D. Mihoubi, Energ. Convers. Manag. 87, 832 (2014)

    Article  Google Scholar 

  34. C. Contini, R. Álvarez, M. O’sullivan, D.P. Dowling, S.Ó. Gargan, F.J. Monahan, Meat Sci. 96, 1171 (2014)

    Article  CAS  Google Scholar 

  35. W.L. Mccabe, J.C. Smith, P. Harriot, Unit Operations of Chemical Engineering, 5th edn. (McGraw-Hill Book Company, New York, 1993)

    Google Scholar 

  36. L.M. Diamante, P.A. Munro, Solar Energ. 51, 271 (1993)

    Article  Google Scholar 

  37. G. Ruiz-Diaz, J. Martinez-Monzo, P. Fito, A. Chiralt, Innov. Food Sci. Emerg. Technol. 4, 203 (2003)

    Article  Google Scholar 

  38. P.P. Lewicki, J. Food Eng. 36, 81 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmi Seyhun Kipcak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipcak, A.S. Microwave drying kinetics of mussels (Mytilus edulis). Res Chem Intermed 43, 1429–1445 (2017). https://doi.org/10.1007/s11164-016-2707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2707-4

Keywords

Navigation