Skip to main content
Log in

Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Transcriptional factors are easily susceptible to any stimuli, including exercise. Exercise can significantly influence PGC-1 α and AMPK-SIRT1 pathway, as it is involved in the regulation of energy metabolism and mitochondrial biogenesis. Exercise is a major energy deprivation process by which many of transcription factors get tuned positively. However, how transcription factors help to boost the antioxidant defense system at cellular level is elusive. It is well known that physical exercise can induce reactive oxygen species, but how these reactive oxygen species can help to regulate multiple transcription factors during exercise is an important area to be discussed yet. This review mainly focuses on interconnecting role of PGC-1 α and AMPK-SIRT1 pathway during exercise and how these proteins are getting tuned by reactive oxygen species in exercise condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

AMPK:

Adenosine monophosphate protein kinase

ATP:

Adenosine triphosphate

CAT:

Catalase

FoxO1:

Forkhead box protein O1

H2O2 :

Hydrogen peroxide

iNOS:

Inducible nitric oxide synthase

LKB1:

Liver kinase B1

MEF:

Myocyte enhancer factor

NRF-1:

Nuclear respiratory factor 1

NRF-2:

Nuclear respiratory factor 2

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide dehydrogenase

Nampt:

Nicotinamide phosphoribosyl transferase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B

NoXs:

NADPH oxidases

OH:

Hydroxyl radicals

PGC-1 α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

ROS/RNS:

Reactive oxygen species/reactive nitrogen species

SIRT1:

Sirtuin

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor alpha

TFAM:

Mitochondrial transcription factor A

UCP1:

Uncoupling protein 1

UCP2:

Uncoupling protein 2

References

  1. Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR (2013) p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balon TW, Nadler JL (1994) Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol 77:2519–2521

    CAS  PubMed  Google Scholar 

  3. Baldelli S, Aquilano K, Ciriolo MR (2014) PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis 6:e1515

    Article  Google Scholar 

  4. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8(4):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794

    Article  PubMed  Google Scholar 

  6. Barnes BR et al (2005) Changes in exercise-induced gene expression in 5′-AMP-activated protein kinase γ3-null and γ3 R225Q transgenic mice. Diabetes 54:3484–3489

    Article  CAS  PubMed  Google Scholar 

  7. Barnes BR et al (2005) 5′-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB J 19:773–779

    Article  CAS  PubMed  Google Scholar 

  8. Barnes BR et al (2004) The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279:38441–38447

    Article  CAS  PubMed  Google Scholar 

  9. Bayod S, Del Valle J, Lalanza JF et al (2012) Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol 47:925–935

    Article  CAS  PubMed  Google Scholar 

  10. Bedogni B, Pani G, Colavitti R, Riccio A, Borrello S, Murphy M et al (2003) Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem 278:16510–16519

    Article  CAS  PubMed  Google Scholar 

  11. Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM (2008) Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312

    Article  CAS  PubMed  Google Scholar 

  12. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445:11–27

    Article  CAS  PubMed  Google Scholar 

  14. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:2–12

    Article  CAS  PubMed  Google Scholar 

  15. Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN (2004) NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release. Circ Res 94(4):478–486

    Article  CAS  PubMed  Google Scholar 

  16. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE (2000) AMPK signaling in contracting human skeletal muscle:acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrine Metab 279:E1202–E1206

    CAS  Google Scholar 

  17. Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, Kemp BE, McConell GK (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212

    Article  CAS  PubMed  Google Scholar 

  18. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  PubMed Central  Google Scholar 

  20. Costford SR, Bajpeyi S, Pasarica M et al (2010) Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 298(1):E117–E126

    Article  CAS  PubMed  Google Scholar 

  21. Davies KJ, Maguire JJ, Brooks GA, Dallman PR, Packer L (1982) Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Phys 242(6):E418–E427

    CAS  Google Scholar 

  22. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress. Nat Chem Biol 7(8): 504–511

  23. Finkel T (2006) Cell biology: a clean energy programme. Nature 444:151–152

    Article  CAS  PubMed  Google Scholar 

  24. Flores MB, Fernandes MF, Ropelle ER, Faria MC, Ueno M, Velloso LA, Saad MJ, Carvalheira JB (2006) Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes 55:2554–2561

    Article  CAS  PubMed  Google Scholar 

  25. Fu X, Yao K, Du X, Li Y, Yang X, Yu M, Li M, Cui Q (2016) PGC-1α regulates the cell cycle through ATP and ROS in CH1 cells J Zhejiang Univ Sci B 17(2): 136–146

  26. Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, Goodyear LJ (2005) AMP-activated protein kinase α2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280:39033–39041

    Article  CAS  PubMed  Google Scholar 

  27. Fujii N, Jessen N, Goodyear LJ (2006) AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 291:E867–E877

    Article  CAS  PubMed  Google Scholar 

  28. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12:51–62

    Article  CAS  PubMed  Google Scholar 

  29. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gurd BJ, Yoshida Y, McFarlan JT et al (2011) Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 301(1):R67–R75

    Article  CAS  PubMed  Google Scholar 

  32. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1_ muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  CAS  PubMed  Google Scholar 

  34. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454(7203): 463–469

  35. Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84

    Article  CAS  PubMed  Google Scholar 

  37. Joseph AM, Pilegaard H, Litvintsev A, Leick L, Hood DA (2006) Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise. Essays Biochem 42:13–29

    Article  CAS  PubMed  Google Scholar 

  38. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  CAS  PubMed  Google Scholar 

  39. Kiningham KK, Xu Y, Daosukho C, Popova B, St Clair DK (2001) Nuclear factor kappaB-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem J 353:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N, Li Y, Liew CW, Ho RC, Hirshman MF, Kulkarni RN, Kahn CR, Goodyear LJ (2006) Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26:8217–8227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koh HJ, Brandauer J, Goodyear LJ (2008) LKB1 and AMPK and the regulation of skeletal muscle metabolism. Curr Opin Clin Nutr Metab Care 11:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  PubMed  Google Scholar 

  43. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127

    Article  CAS  PubMed  Google Scholar 

  44. Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612

    Article  CAS  PubMed  Google Scholar 

  45. Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628–27635

  46. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  47. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  48. Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293:E1062–E1068

    Article  CAS  PubMed  Google Scholar 

  49. Lira VA, Brown DL, Lira AK, Kavazis AN, Soltow QA, Zeanah EH, Criswell DS (2010) Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol 15(588):3551–3566

    Article  Google Scholar 

  50. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McConell GK, Ng GP, Phillips M, Ruan Z, Macaulay SL, Wadley GD (2010) Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J Appl Physiol 108:589–595

    Article  CAS  PubMed  Google Scholar 

  52. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A 98:3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miwa S, Brand MD (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans 31:1300–1301

    Article  CAS  PubMed  Google Scholar 

  54. Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP activated protein kinase in contraction and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094

    Article  CAS  PubMed  Google Scholar 

  55. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1 α. Biol Chem 280:16456–16460

    Article  CAS  Google Scholar 

  56. Nogueiras R, Habegger KM, Chaudhary N et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92(3):1479–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100(14):8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pattwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ (2004) Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 37:1064–1072

    Article  PubMed  Google Scholar 

  59. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Investig 117:2459–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  63. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  64. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    Article  CAS  PubMed  Google Scholar 

  65. St Clair DK, Porntadavity S, Xu Y, Kiningham K (2002) Transcription regulation of human manganese superoxide dismutase gene. Methods Enzymol 349:306–312

    Article  CAS  PubMed  Google Scholar 

  66. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 278:26597–26603

    Article  CAS  PubMed  Google Scholar 

  67. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  68. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M (2005) PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66:562–573

    Article  CAS  PubMed  Google Scholar 

  69. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wojtaszewski JF, Mourtzakis M, Hillig T, Saltin B, Pilegaard H (2002) Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 298:309–316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Thirupathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirupathi, A., de Souza, C.T. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem 73, 487–494 (2017). https://doi.org/10.1007/s13105-017-0576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0576-y

Keywords

Navigation