Skip to main content
Log in

An open source ion gate pulser for ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/− 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daum KA, Atkinson DA, Ewing RG (2002) The role of oxygen in the formation of TNT product ions in ion mobility spectrometry. Int J Mass Spectrom 214:257–267

    Article  CAS  Google Scholar 

  2. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529

    Article  CAS  Google Scholar 

  3. Eiceman GA, Nazarov EG, Stone JA (2003) Chemical standards in ion mobility spectrometry. Anal Chim Acta 493:185–194

    Article  CAS  Google Scholar 

  4. Chen C, Tabrizchi M, Wang W, Li H (2015) Field switching combined with Bradbury-Nielsen gate for ion mobility spectrometry. Anal Chem 87:7925–7930

    Article  CAS  Google Scholar 

  5. Mäkinen MA, Anttalainen OA, Sillanpää MET (2010) Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal Chem 82:9594–9600

    Article  Google Scholar 

  6. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion Mobility Spectrometry, 3rd edn. CRC Press, Boca Raton, pp 1–20

  7. Gunzer F, Ulrich A, Baether W (2010) A novel non-radioactive electron source for ion mobility spectrometry. Int. J. Ion Mobil. Spec. 13:9–16

    Article  CAS  Google Scholar 

  8. Wittmer D, Chen YH, Luckenbill BK, Hill HH (1994) Electrospray ionization ion mobility spectrometry. Anal Chem 66:2348–2355

    Article  CAS  Google Scholar 

  9. Hoaglund-Hyzer CS, Clemmer DE (2001) Ion trap/ion mobility/quadrupole/time-of-flight mass spectrometry for peptide mixture analysis. Anal Chem 73:177–184

    Article  CAS  Google Scholar 

  10. Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394:235–244

    Article  CAS  Google Scholar 

  11. Gillig KJ, Ruotolo B, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz AJ (2000) Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal Chem 72:3965–3971

    Article  CAS  Google Scholar 

  12. Spangler GE (2002) Expanded theory for the resolving power of a linear ion mobility spectrometer. Int J Mass Spectrom 220:399–418

    Article  CAS  Google Scholar 

  13. Kirk AT, Bakes K, Zimmermann S (2017) A universal relationship between optimum drift voltage and resolving power. Int J Ion Mobil Spec:1–5

  14. Siems WF, Wu C, Tarver EE, Hill HH Jr, Larsen PR, McMinn DG (1994) Measuring the resolving power of ion mobility spectrometers. Anal Chem 66:4195–4201

    Article  CAS  Google Scholar 

  15. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion mobility spectrometry. CRC Press, Third Edition

    Google Scholar 

  16. Davis EJ, Siems WF, Hill HH Jr (2012) Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism. Anal Chem 84:4760–4767

    Article  CAS  Google Scholar 

  17. Du Y, Wang W, Li H (2012) Bradbury-Nielsen-gate-grid structure for further enhancing the resolution of ion mobility spectrometry. Anal Chem 84:5700–5707

    Article  CAS  Google Scholar 

  18. Brunner T, Mueller AR, O’Sullivan K, Simon MC, Kossick M, Ettenauer S, Gallant AT, Mané E, Bishop D, Good M, Gratta G, Dilling J (2012) A large Bradbury Nielsen ion gate with flexible wire spacing based on photo-etched stainless steel grids and its characterization applying symmetric and asymmetric potentials. Int J Mass Spectrom 309:97–103

    Article  CAS  Google Scholar 

  19. Kirk AT, Zimmermann S (2014) Bradbury-Nielsen vs. Field switching shutters for high resolution drift tube ion mobility spectrometers. Int J Ion Mobil Spec 17:131–137

    Article  Google Scholar 

  20. Zhou L, Collins DC, Lee ED, Rockwood AL, Lee ML (2007) Mechanical ion gate for electrospray-ionization ion-mobility spectrometry. Anal Bioanal Chem 388:189–194

    Article  CAS  Google Scholar 

  21. Kai N, Jingran G, Guangli O, Yu L, Quan Y, Xiang Q, Xiaohao W (2014) A simple template-based transfer method to fabricate Bradbury-Nielsen gates with uniform tension for ion mobility spectrometry. Rev Sci Instrum 85:085107

    Article  Google Scholar 

  22. Puton J, Knap A, Siodłowski B (2008) Modelling of penetration of ions through a shutter grid in ion mobility spectrometers. Sens Actuators B Chem 135:116–121

    Article  CAS  Google Scholar 

  23. Davila SJ, Hadjar O, Eiceman GA (2013) Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD. Anal Chem 85:6716–6722

    Article  CAS  Google Scholar 

  24. Blanchard WC, Nazarov EG, Carr J, Eiceman GA (2017) Ion Injection in a Mobility Spectrometer using Field Gradient Barriers, i.e. Ion Wells

  25. Davis EJ, Williams MD, Siems WF, Hill HH Jr (2011) Voltage sweep ion mobility spectrometry. Anal Chem 83:1260–1267

    Article  CAS  Google Scholar 

  26. Davis EJ, Clowers BH, Siems WF, Hill HH (2011) Comprehensive software suite for the operation, maintenance, and evaluation of an ion mobility spectrometer. Int. J. Ion Mobil. Spec. 14:117

    Article  Google Scholar 

  27. Clowers BH, Siems WF, Yu Z, Davis AL (2015) A two-phase approach to Fourier transform ion mobility time-of-flight mass spectrometry. Analyst 140:6862–6870

    Article  CAS  Google Scholar 

  28. Davis AL, Liu W, Siems WF, Clowers BH (2017) Correlation ion mobility spectrometry. Analyst 142:292–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ED and students from Azusa Pacific University were supported by the National Science Foundation (CHE-1507155) and BHC would like to acknowledge support from the NSF (CHE-1506672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Clowers.

Electronic supplementary material

ESM 1

(DOCX 4543 kb)

ESM 2

(H 3 kb)

ESM 3

(H 387 bytes)

ESM 4

(INO 9 kb)

ESM 5

(H 829 bytes)

ESM 6

(INO 2 kb)

ESM 7

(H 2 kb)

ESM 8

(INO 12 kb)

ESM 9

(DOCX 95 kb)

ESM 10

(PPTX 1523 kb)

ESM 11

(XLSX 61 kb)

ESM 12

(BRD 264 kb)

ESM 13

(PDF 91 kb)

ESM 14

(SCH 1208 kb)

ESM 15

(GER 9 kb)

ESM 16

(GER 121 kb)

ESM 17

(GER 3 kb)

ESM 18

(XLN 2 kb)

ESM 19

(GER 6 kb)

ESM 20

(GER 244 kb)

ESM 21

(GER 172 kb)

ESM 22

(GER 9 kb)

ESM 23

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, L., Saba, C., Manocchio, G. et al. An open source ion gate pulser for ion mobility spectrometry. Int. J. Ion Mobil. Spec. 20, 87–93 (2017). https://doi.org/10.1007/s12127-017-0223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-017-0223-x

Keywords

Navigation