Skip to main content
Log in

Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review)

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The modern concepts on the origin of electroconvection (EC) are surveyed briefly and the known mechanisms of this phenomenon are classified. Factors that influence the EC character and intensity at the surface of ion-exchange membranes are analyzed, such as electrical and geometrical heterogeneity of the membrane surface, its degree of hydrophobicity, and the surface charge. The EC mechanism is shown also to depend on the applied potential difference and the rate of solution flow between membranes. The mechanism of the EC-induced gain in the mass transfer is elucidated, the possible gain in the mass transfer is estimated, and the prospects for using the EC for reducing the membrane fouling caused by sedimentation and formation of organic deposits are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, vol. 264, p. 268.

    Article  CAS  Google Scholar 

  2. Strathmann, H., Grabowski, A., and Eigenberger, G., Ion-exchange membranes in the chemical process industry. industrial and engineering chemistry research, Ind. Eng. Chem. Res., 2013, vol. 52, no. 31, p. 10364.

    Article  CAS  Google Scholar 

  3. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination at overlimiting currents: state-of-the-art and perspectives, Desalination, 2014, vol. 342, p. 85.

    Article  CAS  Google Scholar 

  4. Cifuentes-Araya, N., Pourcelly, G., and Bazinet, L., Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio, J. Colloid Interface Sci., 2011, vol. 361, p. 79.

    Article  CAS  Google Scholar 

  5. Mikhaylin, S., Nikonenko, V., Pourcelly, G., and Bazinet, L., Intensification of demineralization process and decrease in scaling by application of pulsed electric field with short pulse/pause conditions, J. Membr. Sci., 2014, vol. 468, p. 389.

    Article  CAS  Google Scholar 

  6. Mikhaylin, S., Nikonenko, V., Pourcelly, G., and Bazinet, L., Hybrid bipolar membrane electrodialysis/ultrafiltration technology assisted by a pulsed electric field for casein production, Green Chem., 2016, vol. 18, no. 1, p. 307.

    Article  Google Scholar 

  7. Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H., and Han, J., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett., 2007, vol. 99, p. 44501.

    Article  CAS  Google Scholar 

  8. Biesheuvel, P.M. and van der Wal, A., Membrane capacity deionization, J. Membr. Sci., 2010, vol. 346, p. 256.

    Article  CAS  Google Scholar 

  9. Phan, D.-T., Shaegh, S.A.M., Yang, C., and Nguyen, N.-T., Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization, Sens. Actuators B, 2016, vol. 222, p. 735.

    Article  CAS  Google Scholar 

  10. de Jong, J., Lammertink, R.G.H., and Wessling, M., Membranes and microfluidics: a review, Lab Chip, 2006, vol. 6, p. 1125.

    Article  CAS  Google Scholar 

  11. Wang, Y.-C., Stevens, A.L., and Han, J., Million-fold preconcentration of proteins and peptides by nanofluidic filter, Anal. Chem., 2005, vol. 77, p. 4293.

    Article  CAS  Google Scholar 

  12. Kwak, R., Pham, V.S., Kim, B., Chen, L., and Han, J., Enhanced salt removal by unipolar ion conduction in ion concentration polarization desalination, Sci. Rep., 2016, vol. 6, p. 25349.

    Article  CAS  Google Scholar 

  13. Zangle, T.A., Mani, A., and Santiago, J.G., On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: numerical and experimental study, Langmuir, 2009, vol. 25, no. 6, p. 3909.

    Article  CAS  Google Scholar 

  14. Zangle, T.A., Mani, A., and Santiago, J.G., Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces, Chem. Soc. Rev., 2010, vol. 39, no. 3, p. 1014.

    Article  CAS  Google Scholar 

  15. Yaroshchuk, A., Over-limiting currents and deionization shocks in current-induced polarization: localequilibrium analysis, Adv. Colloid Interface Sci., 2012, vol. 183–184, p. 68.

    Article  CAS  Google Scholar 

  16. Mani, A. and Bazant, M.Z., Deionization shocks in microstructures, Phys. Rev. E, 2011, vol. 84, p. 061504.

    Article  CAS  Google Scholar 

  17. Bazant, M.Z., Dydek, E.V., Deng, D., and Mani, A., US Patent 0308953 A1, 2011.

    Google Scholar 

  18. Kim, S.-J., Ko, S.-H., Kang, K.H., and Han, J., Direct seawater desalination by ion concentration polarization, Nat. Nanotechnol., 2010, vol. 5, p. 297.

    Article  CAS  Google Scholar 

  19. Stone, H.A., Stroock, A.D., and Ajdari, A., Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 2004, vol. 36, p. 381.

    Article  Google Scholar 

  20. Schoch, R.B., Han, J., and Renaud, P., Transport phenomena in nanofluidics, Rev. Mod. Phys., 2008, vol. 80, p. 839.

    Article  CAS  Google Scholar 

  21. Chang, H.C., Yossifon, G., and Demekhin, E.A., Nanoscale electrokinetics and microvortices: how hydrodynamics affects nanofluidic ion flow, Annu. Rev. Fluid Mech., 2012, vol. 44, p. 401.

    Article  Google Scholar 

  22. Yeo, L.Y., Chang, H.C., Chan, P.P.Y., and Friend, J.R., Microfluidic devices for bioapplications, Small, 2011, vol. 7, p. 12.

    Article  CAS  Google Scholar 

  23. Slouka, Z., Senapati, S., and Chang, H.C., Microfluidic systems with ion-selective membranes, Annu. Rev. Anal. Chem., 2014, vol. 7, p. 317.

    Article  CAS  Google Scholar 

  24. Bazant, M.Z., Kilic, M.S., Storey, B.D., and Ajdari, A., Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Colloid Interface Sci., 2009, vol. 152, p. 48.

    Article  CAS  Google Scholar 

  25. Frilette, V.J., Electrogravitational transport at synthetic ion exchange membrane surfaces, J. Phys. Chem., 1957, vol. 61, p. 168.

    Article  CAS  Google Scholar 

  26. Rubinstein, I. and Shtilman, L., Voltage against current curves of cation exchange membranes, J. Chem. Soc., Faraday Trans., 1979, vol. 75, p. 231.

    Article  CAS  Google Scholar 

  27. Rubinstein, I., Warshawsky, A., Schechtman, L., and Kedem, O., Elimination of acid–base generation (“water-splitting”) in electrodialysis, Desalination, 1984, vol. 51, p. 55.

    Article  CAS  Google Scholar 

  28. Rubinstein, I. and Zaltzman, B., Electro-osmotically induced convection at a permselective membrane, Phys. Rev. E, 2000, vol. 62, no. 2, 2238.

    Article  CAS  Google Scholar 

  29. Zaltzman, B. and Rubinstein, I., Electro-osmotic slip and electroconvective instability, J. Fluid Mech., 2007, vol. 579, p. 173.

    Article  Google Scholar 

  30. Dukhin, S.S., Mishchuk, N.A., Tarovskii, A.A., and Baran, A.A., Electrophoresis of the second kind, Kolloidn. Zh., 1987, vol. 49, p. 616.

    CAS  Google Scholar 

  31. Dukhin, S.S. and Mishchuk, H.A., Strong concentration polarization of a thin double layer of a spherical particle in external electric field, Kolloidn. Zh., 1988, vol. 50, no. 2, p. 237.

    CAS  Google Scholar 

  32. Dukhin, S.S., Electrokinetic phenomena of the second kind and their applications, Adv. Colloid Interface Sci., 1991, vol. 35, p. 173.

    Article  CAS  Google Scholar 

  33. Maletzki, F., Rösler, H.W., and Staude, E., Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection, J. Membr. Sci., 1992, vol. 71, p. 105.

    Article  CAS  Google Scholar 

  34. Mishchuk, N.A., Concentration polarization of interface and non-linear electrokinetic phenomena, Adv. Colloid Interface Sci., 2010, vol. 160, p. 16.

    Article  CAS  Google Scholar 

  35. Zabolotsky, V.I., Nikonenko, V.V., and Pismenskaya, N.D., On the role of gravitational convection in the transfer enhancement of salt ions in the course of dilute solution electrodialysis, J. Membr. Sci., 1996, vol. 119, p. 171.

    Article  CAS  Google Scholar 

  36. Zabolotsky, V.I., Nikonenko, V.V., Pismenskaya, N.D., Laktionov, E.V., Urtenov, M.K., Strathmann, H., Wessling, M., and Koops, G.H., Coupled transport phenomena in overlimiting current electrodialysis, Sep. Purif. Technol., 1998, vol. 14, no. 1–3, p. 255.

    Article  CAS  Google Scholar 

  37. Pismenskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, P., Pourcelly, G., and Larshe, K., Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes, Russ. J. Electrochem., 2007, vol. 43, p. 307.

    Article  CAS  Google Scholar 

  38. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Intensive current transfer in membrane systems: modeling, mechanisms and application in electrodialysis, Adv. Colloid and Interface Sci., 2010, vol. 160, p. 101.

    Article  CAS  Google Scholar 

  39. Kwak, R., Guan, G., Peng, W.K., and Han, J., Microscale electrodialysis: concentration profiling and vortex visualization, Desalination, 2013, vol. 308, p. 138.

    Article  CAS  Google Scholar 

  40. Deng, D., Dydek, E.V., Han, J.H., Schlumpberger, S., Mani, A., Zaltzman, B., and Bazant, M.Z., Overlimiting current and shock electrodialysis in porous media, Langmuir, 2013, vol. 29, no. 52, p. 16167.

    Article  CAS  Google Scholar 

  41. Levich, V.G. Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959, p. 700

    Google Scholar 

  42. Levich, V.G., Physicochemical Hydrodynamics, New York: Prentice Hall, 1962.

    Google Scholar 

  43. Dukhin, S.S. and Deryagin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.

    Google Scholar 

  44. Probstein, R.F., Physicochemical Hydrodynamics, New York: Wiley, 1994.

    Book  Google Scholar 

  45. Rubinstein, I., Staude, E., and Kedem, O., Role of the membrane surface in concentration polarization at ion-exchange membrane, Desalination, 1988, vol. 69, p. 101.

    Article  CAS  Google Scholar 

  46. Rubinshtein, I., Zaltzman, B., Pretz, J., and Linder, C. Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane, Russ. J. Electrochem, 2002, vol. 38, p. 853.

    Article  CAS  Google Scholar 

  47. Tanaka, Y., Concentration polarization in ionexchange membrane electrodialysis: the events arising in an unforced flowing solution in a desalting cell, J. Membr. Sci., 2004, vol. 244, p. 1.

    CAS  Google Scholar 

  48. Volgin, V.M., and Davydov, A.D., Natural-convective instability of electrochemical systems: a review, Russ. J. Electrochem., 2006, vol. 42, p. 567.

    Article  CAS  Google Scholar 

  49. Martí-Calatayud, M.C., García-Gabaldón, M., and Pérez-Herranz, V., Effect of the equilibria of multivalent metal sulfates on the transport through cationexchange membranes at different current regimes, J. Membr. Sci., 2013, vol. 443, p. 181.

    Article  CAS  Google Scholar 

  50. Pismenskiy, A., Urtenov, M., Kovalenko, A., and Mareev, S., Electrodialysis desalination process in conditions of mixed convection, Desalin. Water Treat., 2015, vol. 56, p. 3211.

    CAS  Google Scholar 

  51. Levich, V.G., Theory of nonequilibrium double layer, Dokl. Akad. Nauk SSSR, 1949, vol. 67, no. 2, p. 309.

    CAS  Google Scholar 

  52. Levich, V.G., On the theory of nonequilibrium double layer, Dokl. Akad. Nauk SSSR, 1959, vol. 124, no. 4, p. 869.

    CAS  Google Scholar 

  53. Grafov, B.M. and Chernenko, A.A., Theory of direct current flow through binary-electrolyte solution, Dokl. Akad. Nauk SSSR, 1962, vol. 146, no. 1, p. 135.

    CAS  Google Scholar 

  54. Grafov, B.M. and Chernenko, A.A., Direct current flow through binary-electrolyte solution, Zh. Fiz. Khim., 1963, vol. 37, no. 3, p. 664.

    CAS  Google Scholar 

  55. Newman, J., The polarized diffuse double layer, Trans. Faraday Soc., 1965, vol. 61, no. 10, p. 2229.

    Article  CAS  Google Scholar 

  56. Smyrl, W.H. and Newman, J., Double layer structure at the limiting current, Trans. Faraday Soc., 1967, vol. 62, no. 1, p. 207.

    Article  Google Scholar 

  57. Chernenko, A.A., On the theory of direct current flow through binary-electrolyte solution, Dokl. Akad. Nauk SSSR, 1963, vol. 153, p. 1129.

    CAS  Google Scholar 

  58. Grigin, A.P., Coulomb convection in electrochemical systems, Elektrokhimiya, 1992, vol. 28, no. 3, p. 307.

    CAS  Google Scholar 

  59. Urtenov, M.A.K., Kirillova, E.V., Seidova, N.M., and Nikonenko, V.V., Decoupling of the Nernst–Planck and Poisson equations, application to a membrane system at overlimiting currents, J. Phys. Chem. B, 2007, vol. 111, p. 14208.

    Article  CAS  Google Scholar 

  60. Bazant, M., Chu, K.T., and Bayly, B.J., Current–voltage relations for electrochemical thin films, SIAM J. Appl. Math., 2005, vol. 65, p. 1463.

    Article  CAS  Google Scholar 

  61. Chu, K.T. and Bazant, M.Z., Electrochemical thin films at and above the classical limiting current, SIAM J. Appl. Math., 2005, vol. 65, p. 1485.

    Article  CAS  Google Scholar 

  62. Dukhin, S.S. and Mishchuk, N.A., Unlimited increase in the current through ionite grains, Kolloidn. Zh., 1988, vol. 49, no. 6, p. 1197.

    Google Scholar 

  63. Rubinstein, I. and Zaltzman, B., Extended space charge in concentration polarization, Adv. Colloid Interface Sci., 2010, vol. 159, p. 117.

    Article  CAS  Google Scholar 

  64. Rubinstein, I., Electroconvection at an electrically inhomogeneous permselective interface, Phys. Fluids A, 1991, vol. 3, p. 2301.

    Article  CAS  Google Scholar 

  65. Mishchuk, N.A., Electroosmosis of second kind near heterogeneous ion-exchange membranes, Colloids Surf., A, 1998, vol. 140, pp. 75–89.

    Article  CAS  Google Scholar 

  66. Pham, S.V., Li, Z., Lim, K.M., White, J.K., and Han, J., Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane, Phys. Rev. E, 2012, vol. 86, 046310.

    Article  CAS  Google Scholar 

  67. Demekhin, E.A., Shelistov, V.S., and Polyanskikh, S.V., Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability, Phys. Rev. E, 2011, vol. 84, no. 3, 036318.

    Article  CAS  Google Scholar 

  68. Zabolotskii, V.V., Urtenov, M.K., Lebedev, K.A., and Bugakov, V.V., Electroconvection in systems with heterogeneous ion-exchange membranes, Russ. J. Electrochem., 2012, vol. 48, no. 7, p. 692.

    Article  CAS  Google Scholar 

  69. Zabolotskii, V.I., Lebedev, K.A., Urtenov, M.Kh. Nikonenko, V.V., Vasilenko, P.A., Shaposhnik, V.A., and Vasill’eva, V.I., A mathematical model describing voltammograms and transport numbers under intensive electrodialysis modes, Russ. J. Electrochem., 2013, vol. 49, no. 4, p. 369.

    Article  CAS  Google Scholar 

  70. Urtenov, M.K., Uzdenova, A.M., Kovalenko, A.V., Nikonenko, V.V., and Pismenskaya, N.D., Vasil’eva, V.I., Sistat, P., and Pourcelly, G., Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells, J. Membr. Sci., 2013, vol. 447, p. 190.

    Article  CAS  Google Scholar 

  71. Druzgalski, C.L., Andersen, M.B., and Mani, A., Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface, Phys. Fluids, 2013, vol. 25, 110804.

    Article  CAS  Google Scholar 

  72. Shelistov, V.S., Nikitin, N.V., Kiry, V.A., and Demekhin, E.A., A sequence of electrokinetic instability bifurcations resulting in a chaotic flow regime, Dokl. Phys., 2014, vol. 59, no. 4, p. 166.

    Article  CAS  Google Scholar 

  73. Ganchenko, G.S., Kalaydin, E.N., Schiffbauer, J., and Demekhin, E.A., Document modes of electrokinetic instability for imperfect electric membranes, Phys.Rev. E, 2016, vol. 94, 063106.

    Article  CAS  Google Scholar 

  74. Andersen, M., Wang, K., Schiffbauer, J., Mani, A., Confinement effects on electroconvective instability, Electrophoresis, 2016 (in press). doi 10.1002/elps.201600391

    Google Scholar 

  75. Pham, S.V., Kwon, H., Kim, B., White, J.K., Lim, G., and Han, J., Helical vortex formation in three-dimensional electrochemical systems with ion-selective membranes, Phys. Rev. E, 2016, vol. 93, no. 3, 033114.

    Article  CAS  Google Scholar 

  76. Sonin, A.A. and Probstein, R.F., Hydrodynamic theory of desalination by electrodialysis, Desalination, 1968, vol. 5, p. 293.

    Article  CAS  Google Scholar 

  77. Gnusin, N.P., Zabolotskii, V.I., Nikonenko, V.V., and Urtenov, M.K., Convective-diffusion model of electrodialytic desalination. Limiting current and diffusion layer, Sov. Electrochem., 1986, vol. 23, no. 3, p. 273.

    Google Scholar 

  78. Shaposhnik, V.A., Kuzminykh, V.A., Grigorchuk, O.V., and Vasil’eva, V.I., Analytical model of laminar flow electrodialysis with ion-exchange membranes, J. Membr. Sci, 1997, vol. 133, no. 1, p. 27.

    Article  CAS  Google Scholar 

  79. Belova, E.I., Lopatkova, G.Y., Pismenskaya, N.D., Nikonenko, V.V., Larchet, C., and Pourcelly, G., Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer, J. Phys. Chem. B, 2006, vol. 110, no. 27, p. 13458.

    Article  CAS  Google Scholar 

  80. Sistat, P., Kozmai, A., Pismenskaya, N., Larchet, C., Pourcelly, G., and Nikonenko, V., Low-frequency impedance of an ion-exchange membrane system, Electrochim. Acta, 2008, vol. 53, no. 22, p. 6380.

    Article  CAS  Google Scholar 

  81. Balster, J., Yildirim, M.H., Stamatialis, D.F., Ibanez, R., Lammertink, R.G.H., Jordan, V., and Wessling, M., Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current, J. Phys. Chem. B, 2007, vol. 111, p. 2152.

    Article  CAS  Google Scholar 

  82. Rubinstein, I. and Zaltzman, B., Equilibrium electroconvective instability, Phys. Rev. Lett., 2015, vol. 114, 114502.

    Article  CAS  Google Scholar 

  83. Mishchuk, N.A. and Takhistov, P.V., Electroosmosis of the second kind, Colloids Surf. A, 1995, vol. 95, p. 119.

    Article  CAS  Google Scholar 

  84. Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., and Nikonenko V.V., Theoretical analysis of the effect of ion concentration in solution bulk and at the membrane surface on the mass transfer at overlimiting currents, Russ. J. Electrochem., 2017, vol. 53; in press.

  85. Zholkovskij, E.K., Vorotynsev, M.A., and Staude, E., Electrokinetic instability of solution in a plane-parallel electrochemical cell, J. Colloid Interface Sci., 1996, vol. 181, no. 1, p. 28.

    Article  CAS  Google Scholar 

  86. Abu-Rjal, R., Rubinstein, I., and Zaltzman, B., Driving factors of electro-convective instability in concentration polarization, Phys. Rev. Fluids, 2016, vol. 1, 023601.

    Article  Google Scholar 

  87. Bruinsma, R. and Alexander, S., Theory of electrohydrodynamic instabilities in electrolytic cells, J. Chem. Phys., 1990, vol. 92, p. 3074.

    Article  CAS  Google Scholar 

  88. Aleksandrov, R.S., Grigin, A.P., and Davydov, A.D. Numerical study of electroconvective instability of binary electrolyte in a cell with plane parallel electrodes, Russ. J. Electrochem., 2002, vol. 38, no. 10, p. 1097.

    Article  CAS  Google Scholar 

  89. Lerman, I., Rubinstein, I., and Zaltzman, B., Absence of bulk electroconvective instability in concentration polarization, Phys. Rev. E, 2005, vol.71.

  90. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R., Mugele, F., and Wessling, M., Direct observation of a nonequilibrium electro-osmotic instability, Phys. Rev. Lett., 2008, vol. 101, 236101.

    Article  CAS  Google Scholar 

  91. Yossifon, G. and Chang, H.C., Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability, Phys. Rev. Lett, 2008, vol. 101, 254501

    Article  CAS  Google Scholar 

  92. Kwak, R., Guan, G., Peng, W.K., and Han, J., Microscale electrodialysis: concentration profiling and vortex visualization, Desalination, 2013, vol. 308, p. 138.

    Article  CAS  Google Scholar 

  93. Green, Y., Park, S., and Yossifon, G., Bridging the gap between an isolated nanochannel and a communicating multipore heterogeneous membrane, Phys. Rev. E, 2015, vol. 91, no. 1, 011002.

    Article  CAS  Google Scholar 

  94. de Valença, J.C., Wagterveld, R.M., Lammertink, R.G.H., and Tsai, P.A., Dynamics of microvortices induced by ion concentration polarization, Phys. Rev. E, 2015, vol. 92, no. 3, 031003.

    Article  CAS  Google Scholar 

  95. Vasil’eva, V.I., Shaposhnik, V.A., Grigorchuk, O.V., and Petrunya, I.P., The membrane-solution interface under high-performance current regimes of electrodialysis by means of laser interferometry, Desalination, 2006, vol. 192, p. 408.

    Article  CAS  Google Scholar 

  96. Shaposhnik, V.A., Vasil’eva, V.I., and Praslov, D.B., Concentration fields of solutions under electrodialysis with ion-exchange membranes, J. Membr. Sci., 1995, vol. 101, nos. 1–2, p. 23.

    Article  CAS  Google Scholar 

  97. Shaposhnik, V.A., Vasil’eva, V.I., and Grigorchuk, O.V., The interferometric investigations of electromembrane processes, Adv. Colloid Interface Sci., 2008, vol. 139, p. 74.

    Article  CAS  Google Scholar 

  98. Vasil’eva, V.I., Zhil’tsova, A.V., Malykhin, M.D., Zabolotskii, V.I., Lebedev, K.A., Chermit, R.K., and Sharafan, M.V., Effect of the chemical nature of the ionogenic groups of ion-exchange membranes on the size of the electroconvective instability region in highcurrent modes, Russ. J. Electrochem., 2014, vol. 50, no. 2, p. 120.

    Article  CAS  Google Scholar 

  99. Nikonenko, V.V., Vasil’eva, V.I., Akberova, E.M., Uzdenova, A.M., Urtenov, M.K., Kovalenko, A.V., Pismenskaya, N.P., Mareev, S.A., and Pourcelly, G., Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes, Adv. Colloid Interface Sci., 2016, vol. 235, p. 233.

    Article  CAS  Google Scholar 

  100. Kozmai, A.E., Nikonenko, V.V., Pismenskaya, N.D., Pryakhina, O.D., Sistat, P., and Pourcelly, G., Diffusion layer thickness in a membrane system as determined from voltammetric and chronopotentiometric data, Russ. J. Electrochem, 2010, vol. 46, no. 12, p. 1383.

    Article  CAS  Google Scholar 

  101. Nam, S., Cho, I., Heo, J., Lim, G., Bazant, M.Z., Moon, D.J., Sung, G.Y., and Kim, S.J., Experimental verification of overlimiting current by surface conduction and electro-270 osmotic flow in microchannels, Phys. Rev. Lett., 2015, vol. 114, 114501.

    Article  CAS  Google Scholar 

  102. Cortelezzi, L. and Karogozian, A.R., On the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech., 2001, vol. 446, p. 347.

    Google Scholar 

  103. Schlegel, F., Wee, D., Marzouk, Y.M., and Ghoniem, A.F., Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech., 2011, vol. 676, p. 461.

    Article  Google Scholar 

  104. del Alamo, J.C., Jimenez, J., Zandonade, P., and Moser, R.D., Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech., 2006, vol. 561, p. 329.

    Article  Google Scholar 

  105. Pawlowski, S., Geraldes, V., Crespo, J.G., and Velizarov, S., Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis, J. Membr. Sci, 2016, vol. 502, pp. 179.

    Article  CAS  Google Scholar 

  106. Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., and Nikonenko, V.V., Effect of electroconvection during pulsed electric field electrodialysis. Numerical experiments, Electrochem. Commun., 2015, vol. 51, p. 1.

    Article  CAS  Google Scholar 

  107. Choi, J-H., Lee, H.-J., and Moon, S.-H., Effects of electrolytes on the transport phenomena in a cationexchange membrane, J. Colloid Interface Sci., 2001, vol. 238, p. 188.

    Article  CAS  Google Scholar 

  108. Gil, V.V., Andreeva, M.A., Pismenskaya, N.D., Nikonenko, V.V., Larchet, C., and Dammak, L., Effect of counterion hydration numbers on the development of electroconvection at the surface of heterogeneous cation-exchange membrane modified with an MF-4SK film, Petrol. Chem., 2016, vol. 56, no. 5, p. 440.

    Article  CAS  Google Scholar 

  109. Mishchuk, N.A., Polarization of systems with complex geometry, Curr. Opin. Colloid Interface Sci., 2013, vol. 18, no. 2, p. 137.

    Article  CAS  Google Scholar 

  110. Rubinstein, I., Zaltzman, B., and Kedem, O., Document electric fields in and around ion-exchange membranes, J. Membr. Sci., 1997, vol. 125, p. 17.

    Article  CAS  Google Scholar 

  111. Rubinstein, I. and Maletzki, F., Electroconvection at an electrically inhomogeneous permselective membrane surface, J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 2079.

    Article  CAS  Google Scholar 

  112. Rubinstein, I., Zaltzman, B., and Pundik, T., Ionexchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes, Phys. Rev. E, 2002, vol. 65, 041507.

    Article  CAS  Google Scholar 

  113. Green, Y. and Yossifon, G., Time-dependent ion transport in heterogeneous permselective systems, Phys. Rev. E, 2015, vol. 91, 063001.

    Article  CAS  Google Scholar 

  114. Green, Y. and Yossifon, G., Effects of three-dimensional geometric field focusing on concentration polarization in a heterogeneous permselective system, Phys. Rev. E, 2014, vol. 89, 013024.

    Article  CAS  Google Scholar 

  115. Mareev, S.A., Nichka, V.S., Butylskii, D.Y., Urtenov, M.K., Pismenskaya, N.D., Apel, P.Y., and Nikonenko, V.V., Chronopotentiometric response of an electrically heterogeneous permselective surface: 3D modeling of transition time and experiment, J. Phys. Chem. C, 2016, vol. 120, no. 24, p. 13113.

    Article  CAS  Google Scholar 

  116. Chang, H.-C., Demekhin, E.A., and Shelistov, V.S., Competition between Dukhin’s and Rubinstein’s electrokinetic modes, Phys. Rev. E, 2012, vol. 86, 046319.

    Article  CAS  Google Scholar 

  117. Davidson, S.M., Wessling, M., and Mani, A., On the dynamical regimes of pattern-accelerated electroconvection, Sci. Rep., 2016, vol. 6, 22505.

    Article  CAS  Google Scholar 

  118. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Pourcelly, G., and Larchet, C., Proceedings of XVIII Mendeleev Congress on General and Applied Chemistry, Moscow, 2007, vol. 2, p. 43.

    Google Scholar 

  119. Pismenskaya, N., Melnik, N., Nevakshenova, E., Nebavskaya, K., and Nikonenko, V., Document enhancing ion transfer in overlimiting electrodialysis of dilute solutions by modifying the surface of heterogeneous ion-exchange membranes, Int. J. Chem. Eng., 2012, vol. 2, 528290.

    Google Scholar 

  120. Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V., Lebedev, K.A., and Nikonenko, V.V., Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes, Electrochim. Acta, 2012, vol. 59, p. 412.

    Article  CAS  Google Scholar 

  121. Korzhova, E., Pismenskaya, N., Lopatin, D., Baranov, O., Dammak, L., and Nikonenko, V., Effect of surface hydrophobization on chronopotentiometric behavior of an AMX anion–exchange membrane at overlimiting currents, J. Membr. Sci., 2016, vol. 500, p. 161.

    Article  CAS  Google Scholar 

  122. Pismenskaya, N.D., Nikonenko, V.V., Pourcelly, G., Dammak, L., and Larchet, C., Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer, J. Phys. Chem. B, 2012, vol. 116, no. 7, p. 2145.

    Article  CAS  Google Scholar 

  123. Gnusin, N.P., Pevnitskaya, M.V., Varentsov, V.K., and Grebenyuk, V.D., RF Patent 216622 (1972).

    Google Scholar 

  124. Belobaba, A.G., Pevnitskaya, M.V., and Kozina, A.A., Electrodialysis of dilute solutions in apparatus with profiled ion-exchange membranes, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1980, no. 9(4), p. 161.

    Google Scholar 

  125. Edardo, P., US Patent 291713 (1975).

    Google Scholar 

  126. Belobaba, A.G., Plekhanov, L.A., and Pevnitskaya, M.V., RF Patent 990256 (1983).

  127. Eigenberger, G., Strathmann, H., and Grabovskiy, A., FRG Patent 009596 (2005); B01D 61/44.

    Google Scholar 

  128. Zabolotskii, V.I., Nikonenko, V.V., Pis’menskaya, N.D., Pis’menskii, V.F., and Laktionov, E.V., RF Patent 2033850 (1995).

    Google Scholar 

  129. Larchet, C., Zabolotsky, V.I., Pismenskaya, N., Nikonenko, V.V., Tskhay, A., TastanovK., and Pourcelly, G., Comparison of different ED stack conceptions when applied for drinking water production from brackish waters, Desalination, 2008, vol. 222, nos. 1–3, p. 489.

    Article  CAS  Google Scholar 

  130. Zabolotskii, V.I., Loza, S.A., and Sharafan, M.V., Physicochemical properties of profiled heterogeneous ion-exchange membranes, Russ. J. Electrochem., 2005, vol. 41, no. 10, p. 1053.

    Article  CAS  Google Scholar 

  131. van Baak, W., Saakes, M., and Nijmeijer, K., Monovalent-ion-selective membranes for reverse electrodialysis, J. Membr. Sci., 2014, vol. 455, p. 254.

    Article  CAS  Google Scholar 

  132. Vasil'eva, V.I., Bityutskaya, L.A., Zaichenko, N.A., Grechkina, M.V., Botova, T.S., and Agapov, B.L., Microscopic analysis of surface morphology of ionexchange membranes, Sorbtsionnye Khromatogr. Protsessy, 2008, vol. 8, no. 2, p. 260.

    Google Scholar 

  133. Vasil’eva, V.I., Kranina, N.A., Malykhin, M.D., Akberova, E.M., and Zhil’tsova, A.V., Surface heterogeneity of ion-exchange membranes according to data of methods STM and AFM, Poverkhnost, 2013, no. 2, p. 51.

    Google Scholar 

  134. Knyaginicheva, E.V., Belashova, E.D., Sarapulova, V.V., and Pis’menskaya, N.D., Effect of MA-41 membrane modification on its electrochemical characteristics, Kondens. Sredy Mezhfazny Granitsy, 2014, vo. 16, no. 3, p. 282.

    Google Scholar 

  135. Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., and Larchet, C., Role of water splitting in development of electroconvection in ion-exchange membrane systems, Desalination, 2006, vol. 199, nos. 1–3, p. 59.

    Article  CAS  Google Scholar 

  136. Slouka, Z., Senapati, S., Yan, Y., and Chang, H.C., Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures, Langmuir, 2013, vol. 29, no. 26, p. 8275.

    Article  CAS  Google Scholar 

  137. Nebavskaya, K.A., Sabbatovskiy, K.G., Sobolev, V.D., Pismenskaya, N.D., Cretin, M., and Nikonenko, V.V., Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents, J. Membr. Sci., 2017, vol. 523, p. 36.

    Article  CAS  Google Scholar 

  138. Ibl, N.D., Some theoretical aspects of pulse electrolysis, Surf. Technol., 1980, vol. 10, no. 2, p. 81.

    Article  CAS  Google Scholar 

  139. Puippe, J.C. and Leaman, F.H., Theory and practice of pulse plating. Research Parkway, Orlando (Florida): AESF, 1986.

    Google Scholar 

  140. Berezin, N.B., Gudin, N.V., Filippova, A.G., Chevela, V.V., Mezhevich, Zh.V., Yakh’yaev, E.D., and Sagdeev, K.A., Elektroosazhdenie metallov i splavov iz vodnykh rastvorov kompleksnykh soedinenii (Electrodeposition of Metals and Alloys from Aqueous Solutions of Complex Compounds), Kazan: KGTU, 2006.

    Google Scholar 

  141. Wasekar, N.P., Latha, S.M., Ramakrishna, M., Rao, D.S., and Sundararajan, G., Pulsed electrodeposition and mechanical properties of Ni–W/SiC nano-composite coatings, Mater. Des., 2016, vol. 112, p. 140.

    Article  CAS  Google Scholar 

  142. Mikhaylin, S. and Bazinet, L., Fouling on ionexchange membranes: classification, characterization and strategies of prevention and control, Adv. Colloid and Interface Sci., 2016, vol. 229, p. 34.

    Article  CAS  Google Scholar 

  143. Mishchuk, N.A. and Koopal, L.K., Intensification of electrodialysis by applying a non-stationary electric field, Colloids Surf. A, 2001, vol. 176, nos. 2–3, p. 195.

    Article  CAS  Google Scholar 

  144. Sistat, P., Huguet, P., Ruiz, B., Pourcelly, G., Mareev, S.A., and Nikonenko, V.V., Effect of pulsed electric field on electrodialysis of a NaCl solution in sub-limiting current regime, Electrochim. Acta, 2015, vol. 164, p. 267.

    Article  CAS  Google Scholar 

  145. Lee, H.-J., Moon, S.-H., and Tsai, S.-P., Effects of pulsed electric fields on membrane fouling in electrodialysis of NaCl solution containing humate, Sep. Purif. Technol, 2002, vol. 27, no. 2, p. 89.

    Article  Google Scholar 

  146. Ruiz, B., Sistat, P., Huguet, P., Pourcelly, G., Araya-Farias, M., and Bazinet, L., Document application of relaxation periods during electrodialysis of a casein solution: impact on anion-exchange membrane fouling, J. Membr. Sci., 2007, vol. 287, no. 1, p. 41.

    Article  CAS  Google Scholar 

  147. Suwal, S., Amiot, J., Beaulieu, L., and Bazinet, L., Effect of pulsed electric field and polarity reversal on peptide/amino acid migration, selectivity and fouling mitigation, J. Membr. Sci., 2016, vol. 510, p. 405.

    Article  CAS  Google Scholar 

  148. Malek, P., Ortiz, J.M., Richards, B.S., and Schäfer, A.I., Electrodialytic removal of NaCl from water: Impacts of using pulsed electric potential on ion transport and water dissociation phenomena, J. Membr. Sci., 2013, vol. 435, p. 99.

    Article  CAS  Google Scholar 

  149. Cifuentes-Araya, N., Pourcelly, G., and Bazinet, L., Water splitting proton-barriers for mineral membrane fouling control and their optimization by accurate pulsed modes of electrodialysis, J. Membr. Sci., 2013, vol. 447, p. 433.

    Article  CAS  Google Scholar 

  150. Chandrasekar, M.S. and Pushpavanam, M., Pulse and pulse reverse plating–Conceptual, advantages and applications, Electrochim. Acta, 2008, vol. 53, p. 3313.

    Article  CAS  Google Scholar 

  151. Cheh, H.Y., Electrodeposition of gold by pulsed current, J. Electrochem. Soc., 1971, vol. 118, no. 4, p. 551.

    Article  CAS  Google Scholar 

  152. Yin, K.-M., Duplex diffusion layer model for pulse with reverse plating, Surf. Coat. Technol., 1997, vol. 88, p. 162.

    Article  CAS  Google Scholar 

  153. Mishchuk, N.A., Perspectives of the electrodialysis intensification, Desalination, 1998, vol. 117, p. 283.

    Article  CAS  Google Scholar 

  154. Mishchuk, N.A., Verbich, S.V., and Gonzalez-Caballero, F., Concentration polarization and specific selectivity of membranes in pulse mode, Colloid J., 2001, vol. 63, p. 586.

    Article  CAS  Google Scholar 

  155. Vermaas, D.A., Saakes, M., and Nijmeijer, K., Power generation using profiled membranes in reverse electrodialysis, J. Membr. Sci., 2011, vols. 385–386, p. 234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nikonenko.

Additional information

Original Russian Text © V.V. Nikonenko, S.A. Mareev, N.D. Pis’menskaya, A.M. Uzdenova, A.V. Kovalenko, M.Kh. Urtenov, G. Pourcelly, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1266–1289.

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonenko, V.V., Mareev, S.A., Pis’menskaya, N.D. et al. Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review). Russ J Electrochem 53, 1122–1144 (2017). https://doi.org/10.1134/S1023193517090099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517090099

Keywords

Navigation