Skip to main content
Log in

Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. To comply with the new strict international regulations, the Cr(VI)-era will soon have to come to an end. Anodizing aluminum in acid electrolytes produces a self-ordered porous oxide layer. Although different acids can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the complete Cr(VI)-based process is not easily matched. This paper provides a critical overview and appraisal of proposed alternatives to CAA, including combinations of multiple anodizing steps, preand post anodizing treatments. The work is presented in terms of the modifications to the oxide properties, such as morphological features (e.g., pore size, barrier layer thickness) and surface chemistry, in order to evaluate the link between fundamental principles of adhesion and bond performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chromium, U.S. Department of Health and Human Services, Public Health Service, 2012

  2. Sueker J K. 5-Chromium A2-Morrison, Robert D. In: Murphy B L, ed. Environmental Forensics. Burlington: Academic Press, 1964, 81–95

    Chapter  Google Scholar 

  3. Royle H. Toxicity of chromic acid in the chromium plating industry (1). Environmental Research, 1975, 10(1): 39–53

    Article  CAS  PubMed  Google Scholar 

  4. Murray R. Health of workers in chromate producing industry. British Journal of Industrial Medicine, 1957, 14(2): 140–141

    PubMed Central  Google Scholar 

  5. Alexander B H, Checkoway H, Wechsler L, Heyer N J, Muhm J M, O’Keeffe T P. Lung cancer in chromate-exposed aerospace workers. Journal of Occupational and Environmental Medicine, 1996, 38(12): 1253–1258

    Article  CAS  PubMed  Google Scholar 

  6. Vallero D. Chapter 11: Cancer and Air Pollutants. Fundamentals of Air Pollution (Fifth Edition). Boston: Academic Press, 2014, 271–311

    Google Scholar 

  7. Occupational Safety and Health Administration (OSHA) 1910: Toxic and Hazardous Substances Occupational Exposure to Hexavalent Chromium, 2006

  8. Ebnesajjad S. Introduction and Adhesion Theories. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 3–13

    Chapter  Google Scholar 

  9. Brockmann W, Geiß P L, Klingen J, Schröder B. Adhesive Bonding. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009: 1–28

    Google Scholar 

  10. Marshall S J, Bayne S C, Baier R, Tomsia A P, Marshall G W. A review of adhesion science. Dental Materials, 2010, 26(2): e11–e16

    Article  CAS  PubMed  Google Scholar 

  11. Bishopp J. Adhesives for Aerospace Structures. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 301–344

    Chapter  Google Scholar 

  12. Higgins A. Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives, 2000, 20(5): 367–376

    Article  CAS  Google Scholar 

  13. Sargent J P. Durability studies for aerospace applications using peel and wedge tests. International Journal of Adhesion and Adhesives, 2005, 25(3): 247–256

    Article  CAS  Google Scholar 

  14. Zanni-Deffarges M P, Shanahan M E R. Diffusion of water into an epoxy adhesive: Comparison between bulk behaviour and adhesive joints. International Journal of Adhesion and Adhesives, 1995, 15(3): 137–142

    Article  CAS  Google Scholar 

  15. Posner R, Ozcan O, Grundmeier G. Water and Ions at Polymer/Metal Interfaces. In: Silva M L F, Sato C, eds. Design of Adhesive Joints under Humid Conditions. Berlin: Springer Berlin Heidelberg, 2013, 21–52

    Chapter  Google Scholar 

  16. Sheasby P G, Pinner R. Surface Treatment and Finishing of Aluminium and its Alloys. 6th ed. England: Finishing Publications Ltd., 2001, 5–8

    Google Scholar 

  17. Sukiman N L, Zhou X, Birbilis N, Hughes A E, Mol J M C, Garcia S J, Zhou X, Thompson G E. Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. Aluminium Alloys—New Trends in Fabrication and Applications: InTech, 2012, 47–97

    Google Scholar 

  18. Lyle J P, Granger D A, Sanders R E. Aluminum Alloys. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2000, 1–47

    Google Scholar 

  19. Boag A, Hughes A E, Glenn A M, Muster T H, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corrosion Science, 2011, 53(1): 17–26

    Article  CAS  Google Scholar 

  20. Hughes A E, Boag A, Glenn A M, McCulloch D, Muster T H, Ryan C, Luo C, Zhou X, Thompson G E. Corrosion of AA2024-T3 Part II: Co-operative corrosion. Corrosion Science, 2011, 53(1): 27–39

    Article  CAS  Google Scholar 

  21. Glenn A M, Muster T H, Luo C, Zhou X, Thompson G E, Boag A, Hughes A E. Corrosion of AA2024-T3 Part III: Propagation. Corrosion Science, 2011, 53(1): 40–50

    Article  CAS  Google Scholar 

  22. Afseth A. Metallurgical control of filiform corrosion of aluminium alloys. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 1999: 173

    Google Scholar 

  23. Zhou X, Liu Y, Thompson G E, Scamans G M, Skeldon P, Hunter J A. Near-surface deformed layers on rolled aluminum alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2011, 42(5): 1373–1385

    Article  CAS  Google Scholar 

  24. Critchlow G W, Brewis D M. Review of surface pretreatments for aluminium alloys. International Journal of Adhesion and Adhesives, 1996, 16(4): 255–275

    Article  CAS  Google Scholar 

  25. Wegman R F, van Twisk J. Aluminum and Aluminum Alloys. In: Wegman R F, van Twisk J, eds. Surface Preparation Techniques for Adhesive Bonding, 2nd ed. New York: William Andrew Publishing, 2013, 9–37

    Chapter  Google Scholar 

  26. Pocius A V. The electrochemistry of the FPL (Forest Products Laboratory) process and its relationship to the durability of structural adhesive bonds. Journal of Adhesion, 1992, 39(2–3): 101–121

    Article  CAS  Google Scholar 

  27. Venables J D, McNamara D K, Chen J M, Sun T S, Hopping R L. Oxide morphologies on aluminum prepared for adhesive bonding. Applications of Surface Science, 1979, 3(1): 88–98

    Article  CAS  Google Scholar 

  28. Thompson G E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 1997, 297(1–2): 192–201

    Article  CAS  Google Scholar 

  29. Su Z, Zhou W. Porous anodic metal oxides. Science Foundation in China, 2009, 16(1): 36–53

    Article  Google Scholar 

  30. Aerts T. Study of the influence of temperature and heat transfer during anodic oxide growth on aluminium. Dissertation for the Doctoral Degree. Brussels: Vrije Universiteit Brussel, 2009, 9–22

    Google Scholar 

  31. Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 1953, 100(9): 411–419

    Article  CAS  Google Scholar 

  32. O’Sullivan J P, Wood G C. The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 317(1531): 511–543

    Article  Google Scholar 

  33. Critchlow G W, Yendall K A, Bahrani D, Quinn A, Andrews F. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. International Journal of Adhesion and Adhesives, 2006, 26(6): 419–453

    Article  CAS  Google Scholar 

  34. Brockmann W, Hennemann O D, Kollek H. Surface properties and adhesion in bonding aluminium alloys by adhesives. International Journal of Adhesion and Adhesives, 1982, 2(1): 33–40

    Article  CAS  Google Scholar 

  35. Olsson-Jacques C L, Wilson A R, Rider A N, Arnott D R. Effect of contaminant on the durability of epoxy adhesive bonds with Alclad 2024 aluminium alloy adherends. Surface and Interface Analysis, 1996, 24(9): 569–577

    Article  CAS  Google Scholar 

  36. Kinloch A J, Little M S G, Watts J F. The role of the interphase in the environmental failure of adhesive joints. Acta Materialia, 2000, 48(18–19): 4543–4553

    Article  CAS  Google Scholar 

  37. Pape P G. Adhesion Promoters. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 369–386

    Chapter  Google Scholar 

  38. Abel ML, Digby R P, Fletcher I W, Watts J F. Evidence of specific interaction between glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS. Surface and Interface Analysis, 2000, 29(2): 115–125

    Article  CAS  Google Scholar 

  39. Tchoquessi Doidjo M R, Belec L, Aragon E, Joliff Y, Lanarde L, Meyer M, Bonnaudet M, Perrin F X. Influence of silane-based treatment on adherence and wet durability of fusion bonded epoxy/steel joints. Progress in Organic Coatings, 2013, 76(12): 1765–1772

    Article  CAS  Google Scholar 

  40. Ooij W, Zhu D, Palanivel V, Lamar J A, Stacy M. Overview: The potential of silanes for chromate replacement in metal finishing industries. Silicon Chemistry, 2006, 3(1–2): 11–30

    Article  CAS  Google Scholar 

  41. Thiedmanu W, Tolan F C, Pearce P J, Morris C E M. Silane coupling agents as adhesion promoters for aerospace structural film adhesives. Journal of Adhesion, 1987, 22(3): 197–210

    Article  Google Scholar 

  42. Cabral A, Duarte R G, Montemor MF, Zheludkevich ML, Ferreira M G S. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corrosion Science, 2005, 47(3): 869–881

    Article  CAS  Google Scholar 

  43. Cabral A M, Duarte R G, Montemor M F, Ferreira M G S. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: Composition of the films formed. Progress in Organic Coatings, 2005, 54(4): 322–331

    Article  CAS  Google Scholar 

  44. Song J, van Ooij W J. Bonding and corrosion protection mechanisms of APS and BTSE silane films on aluminum substrates. Journal of Adhesion Science and Technology, 2003, 17(16): 2191–2221

    Article  CAS  Google Scholar 

  45. Franquet A, Terryn H, Vereecken J. Study of the effect of different aluminium surface pretreatments on the deposition of thin nonfunctional silane coatings. Surface and Interface Analysis, 2004, 36(8): 681–684

    Article  CAS  Google Scholar 

  46. Park S Y, ChoiWJ, Choi H S, Kwon H, Kim S H. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995–2008). Journal of Adhesion, 2010, 86(2): 192–221

    Article  CAS  Google Scholar 

  47. Hughes A E, Cole I S, Muster T H, Varley R J. Designing green, self-healing coatings for metal protection. NPG Asia Materials, 2010, 2(4): 143–151

    Article  Google Scholar 

  48. Kinloch A J, Welch L S, Bishop H E. The locus of environmental crack growth in bonded aluminium alloy joints. Journal of Adhesion, 1984, 16(3): 165–177

    Article  CAS  Google Scholar 

  49. Visser P, Terryn H, Mol J M. Aerospace Coatings. In: Hughes A E, Mol J M C, Zheludkevich M L, Buchheit R G, eds. Active Protective Coatings. Berlin: Springer, 2016, 315–372

    Chapter  Google Scholar 

  50. Sulka G D, Parkola K G. Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochimica Acta, 2007, 52(5): 1880–1888

    Article  CAS  Google Scholar 

  51. Arrowsmith D J, Clifford A W. Morphology of anodic oxide for adhesive bonding of aluminum. International Journal of Adhesion and Adhesives, 1983, 3(4): 193–196

    Article  CAS  Google Scholar 

  52. Kock E, Muss V, Matz C, de Wit F. Patent EP0607579 A1, 1994-07-27

  53. Abrahami S T, Hauffman T, de Kok J M M, Mol J M C, Terryn H. XPS analysis of the surface chemistry and interfacial bonding of barrier-type Cr(VI)-free anodic oxides. Journal of Physical Chemistry C, 2015, 119(34): 19967–19975

    Article  CAS  Google Scholar 

  54. Abrahami S T, de Kok JMM, Gudla V C, Ambat R, Terryn H, Mol J M C. Interface strength and degradation of adhesively bonded porous aluminum oxides. NPJ Materials Degradation, 2017, in press

  55. Kape J M. Electroplating. Metal Finishing, 1961, 11: 407–415

    Google Scholar 

  56. Curioni M, Skeldon P, Koroleva E, Thompson G E, Ferguson J. Role of tartaric acid on the anodizing and corrosion behavior of AA 2024 T3 aluminum alloy. Journal of the Electrochemical Society, 2009, 156(4): C147–C153

    Article  CAS  Google Scholar 

  57. García-Rubio M, de Lara M P, Ocón P, Diekhoff S, Beneke M, Lavía A, García I. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films. Electrochimica Acta, 2009, 54(21): 4789–4800

    Article  CAS  Google Scholar 

  58. García-Rubio M, Ocón P, Climent-Font A, Smith R W, Curioni M, Thompson G E, Skeldon P, Lavía A, García I. Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024 T3 aerospace alloy. Corrosion Science, 2009, 51(9): 2034–2042

    Article  CAS  Google Scholar 

  59. van Put M, Abrahami S T, Elisseeva O, de Kok JMM, Mol JMC, Terryn H. Potentiodynamic anodizing of aluminum alloys in Cr (VI)-free electrolytes. Surface and Interface Analysis, 2016, 48(8): 946–952

    Article  CAS  Google Scholar 

  60. Domingues L, Fernandes J C S, Da Cunha Belo M, FerreiraMG S, Guerra-Rosa L. Anodising of Al 2024-T3 in a modified sulphuric acid/boric acid bath for aeronautical applications. Corrosion Science, 2003, 45(1): 149–160

    Article  Google Scholar 

  61. Zhang J S, Zhao X H, Zuo Y, Xiong J P. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface and Coatings Technology, 2008, 202(14): 3149–3156

    Article  CAS  Google Scholar 

  62. Yendall K A, Critchlow G W. Novel methods, incorporating preand post-anodising steps, for the replacement of the Bengough-Stuart chromic acid anodising process in structural bonding applications. International Journal of Adhesion and Adhesives, 2009, 29(5): 503–508

    Article  CAS  Google Scholar 

  63. Johnsen B B, Lapique F, Bjørgum A. The durability of bonded aluminium joints: A comparison of AC and DC anodising pretreatments. International Journal of Adhesion and Adhesives, 2004, 24(2): 153–161

    Article  CAS  Google Scholar 

  64. Critchlow G, Ashcroft I, Cartwright T, Bahrani D. US Patent, 0213618 A1, 2008-09-04

  65. Arrowsmith D J, Clifford A W. A new pretreatment for the adhesive bonding of aluminium. International Journal of Adhesion and Adhesives, 1985, 5(1): 40–42

    Article  CAS  Google Scholar 

  66. Digby R P, Packham D E. Pretreatment of aluminium: topography, surface chemistry and adhesive bond durability. International Journal of Adhesion and Adhesives, 1995, 15(2): 61–71

    Article  CAS  Google Scholar 

  67. Chung C K, Liao M W, Chang H C, Lee C T. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization. Thin Solid Films, 2011, 520(5): 1554–1558

    Article  CAS  Google Scholar 

  68. Underhill P R, Rider A N. Hydrated oxide film growth on aluminium alloys immersed in warm water. Surface and Coatings Technology, 2005, 192(2–3): 199–207

    Article  CAS  Google Scholar 

  69. Rider A N. The influence of porosity and morphology of hydrated oxide films on epoxy-aluminium bond durability. Journal of Adhesion Science and Technology, 2001, 15(4): 395–422

    Article  CAS  Google Scholar 

  70. Özkanat Ö, Salgin B, Rohwerder M, Mol J M C, de Wit J H W, Terryn H. Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy. Journal of Physical Chemistry C, 2011, 116(2): 1805–1811

    Article  CAS  Google Scholar 

  71. Özkanat Ö, de Wit F M, de Wit J H W, Terryn H, Mol J M C. Influence of pretreatments and aging on the adhesion performance of epoxy-coated aluminum. Surface and Coatings Technology, 2013, 215: 260–265

    Article  CAS  Google Scholar 

  72. Rider A N, Arnott D R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International Journal of Adhesion and Adhesives, 2000, 20(3): 209–220

    Article  CAS  Google Scholar 

  73. Din R U, Piotrowska K, Gudla V C, Jellesen MS, Ambat R. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation. Applied Surface Science, 2015, 355: 820–831

    Article  CAS  Google Scholar 

  74. Din R U, Jellesen M S, Ambat R. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance. Applied Surface Science, 2015, 355: 716–725

    Article  CAS  Google Scholar 

  75. Din R U, Jellesen M S, Ambat R. Role of acidic chemistries in steam treatment of aluminium alloys. Corrosion Science, 2015, 99: 258–271

    Article  CAS  Google Scholar 

  76. Sulka G D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. Nanostructured Materials in Electrochemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 1–116

    Google Scholar 

  77. Parkhutik V P. The initial stages of aluminium porous anodization studied by Auger electron spectroscopy. Corrosion Science, 1986, 26(4): 295–310

    Article  CAS  Google Scholar 

  78. Xu Y, Thompson G E,Wood G C, Bethune B. Anion incorporation and migration during barrier film formation on aluminium. Corrosion Science, 1987, 27(1): 83–102

    Article  CAS  Google Scholar 

  79. González-Rovira L, López-Haro M, Hungría A B, El Amrani K, Sánchez-Amaya J M, Calvino J J, Botana F J. Direct subnanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers. Corrosion Science, 2010, 52(11): 3763–3773

    Article  CAS  Google Scholar 

  80. Ono S, Ichinose H, Masuko N. The high resolution observation of porous anodic films formed on aluminum in phosphoric acid solution. Corrosion Science, 1992, 33(6): 841–850

    Article  CAS  Google Scholar 

  81. Thompson G E, Wood G C. Anodic Films on Aluminium. In: Treatise on Materials Science and Technology. Amsterdam: Elsevier, 1983, 205–329

    Google Scholar 

  82. Alexander M R, Thompson G E, Beamson G. Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: A procedure for curve fitting the O 1s core level. Surface and Interface Analysis, 2000, 29(7): 468–477

    Article  CAS  Google Scholar 

  83. van den Brand J, Blajiev O, Beentjes P C J, Terryn H, de Wit J H W. Interaction of anhydride and carboxylic acid compounds with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir, 2004, 20(15): 6308–6317

    Article  CAS  PubMed  Google Scholar 

  84. Abrahami S T, Hauffman T, de Kok J M M, Mol J M C, Terryn H. Effect of anodic aluminum oxide chemistry on adhesive bonding of epoxy. Journal of Physical Chemistry C, 2016, 120(35): 19670–19677

    Article  CAS  Google Scholar 

  85. Wood G C, O’Sullivan J P. The anodizing of aluminium in sulphate solutions. Electrochimica Acta, 1970, 15(12): 1865–1876

    Article  CAS  Google Scholar 

  86. Patermarakis G, Moussoutzanis K. Transformation of porous structure of anodic alumina films formed during galvanostatic anodising of aluminium. Journal of Electroanalytical Chemistry, 2011, 659(2): 176–190

    Article  CAS  Google Scholar 

  87. Curioni M, Skeldon P, Thompson G E. Anodizing of aluminum under nonsteady conditions. Journal of the Electrochemical Society, 2009, 156(12): C407–C413

    Article  CAS  Google Scholar 

  88. Han X Y, Shen W Z. Improved two-step anodization technique for ordered porous anodic aluminum membranes. Journal of Electroanalytical Chemistry, 2011, 655(1): 56–64

    Article  CAS  Google Scholar 

  89. Aerts T, Dimogerontakis T, de Graeve I, Fransaer J, Terryn H. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surface and Coatings Technology, 2007, 201(16–17): 7310–7317

    Article  CAS  Google Scholar 

  90. Stpniowski W J, Bojar Z. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surface and Coatings Technology, 2011, 206(2–3): 265–272

    Google Scholar 

  91. Aerts T, Jorcin J B, de Graeve I, Terryn H. Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochimica Acta, 2010, 55(12): 3957–3965

    Article  CAS  Google Scholar 

  92. Schneider M, Kremmer K, Weidmann S K, Fürbeth W. Interplay between parameter variation and oxide structure of a modified PAA process. Surface and Interface Analysis, 2013, 45(10): 1503–1509

    Article  CAS  Google Scholar 

  93. Terryn H. Electrochemical investigation of AC electrograining of aluminium and its porous anodic oxidation. Dissertation for the Doctoral Degree. Brussel: Vrije Universiteit Brussel, 1987: 155–174

    Google Scholar 

  94. Zaraska L, Sulka G D, Szeremeta J, Jaskula M. Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochimica Acta, 2010, 55(14): 4377–4386

    Article  CAS  Google Scholar 

  95. Curioni M, Scenini F. The mechanism of hydrogen evolution during anodic polarization of aluminium. Electrochimica Acta, 2015, 180: 712–721

    Article  CAS  Google Scholar 

  96. Curioni M, Saenz de Miera M, Skeldon P, Thompson G E, Ferguson J. Macroscopic and local filming behavior of AA2024 T3 aluminum alloy during anodizing in sulfuric acid electrolyte. Journal of the Electrochemical Society, 2008, 155(8): C387–C395

    Article  CAS  Google Scholar 

  97. Schneider M, Yezerska O, Lohrengel M M. Anodic oxide formation on AA2024: Electrochemical and microstructure investigation. Corrosion Engineering, Science and Technology, 2008, 43(4): 304–312

    Article  CAS  Google Scholar 

  98. Saenz de Miera M, Curioni M, Skeldon P, Thompson G E. The behaviour of second phase particles during anodizing of aluminium alloys. Corrosion Science, 2010, 52(7): 2489–2497

    Article  CAS  Google Scholar 

  99. Garcia-Vergara S J, El Khazmi K, Skeldon P, Thompson G E. Influence of copper on the morphology of porous anodic alumina. Corrosion Science, 2006, 48(10): 2937–2946

    Article  CAS  Google Scholar 

  100. Kollek H. Some aspects of chemistry in adhesion on anodized aluminium. International Journal of Adhesion and Adhesives, 1985, 5(2): 75–80

    Article  CAS  Google Scholar 

  101. Packham D E. Surface energy, surface topography and adhesion. International Journal of Adhesion and Adhesives, 2003, 23(6): 437–448

    Article  CAS  Google Scholar 

  102. Packham D E, Johnston C. Mechanical adhesion: Were McBain and Hopkins right? An empirical study. International Journal of Adhesion and Adhesives, 1994, 14(2): 131–135

    Article  CAS  Google Scholar 

  103. Allen K W. Some reflections on contemporary views of theories of adhesion. International Journal of Adhesion and Adhesives, 1993, 13(2): 67–72

    Article  CAS  Google Scholar 

  104. van den Brand J, Blajiev O, Beentjes P C J, Terryn H, de Wit J H W. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir, 2004, 20(15): 6318–6326

    Article  CAS  PubMed  Google Scholar 

  105. Özkanat Ö, Salgin B, Rohwerder M, Wit J, Mol J, Terryn H. Interactions at polymer/(oxyhydr) oxide/aluminium interfaces studied by Scanning Kelvin Probe. Surface and Interface Analysis, 2012, 44(8): 1059–1062

    Article  CAS  Google Scholar 

  106. Abrahami S T, Hauffman T, de Kok J M M, Terryn H, Mol J M C. The role of acid-base properties in the interactions across the oxideprimer interface in aerospace applications. Surface and Interface Analysis, 2016, 48(8): 712–720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes M. C. Mol.

Additional information

Since 2006, Johannes M.C. (Arjan) Mol is an Associate Professor of ‘Corrosion Technology and Electrochemistry’ at the Materials Science and Engineering Department of Delft University of Technology (NL). After finishing his MSc in Aerospace Engineering in 1996, he obtained his PhD at Delft University of Technology (TUD) in 2000 on “The effect of microstructural inhomogeneities on filiform corrosion of aluminium alloys”. In the period of 2000–2006 he was project and team leader at the Dutch Institute of Applied Scientific Research TNO in the research area of lifetime performance of materials. Nowadays Arjan Mol leads various fundamental (PhD and post-doc) projects focused on local corrosion mechanisms, interfacial (de)adhesion of organic coatings, surface treatments and the development and evaluation of coating systems, including self-healing anti-corrosive coatings, utilizing advanced micro- and macro electrochemical and surface analysis techniques. He has published over 110 Web of Science listed papers in international peer refereed scientific journals, 13 book chapters, 1 book as co-editor and over 85 international conference proceeding papers. Arjan Mol is Working party Chairman of ‘Physico-chemical methods for Corrosion Research” and currently, as from 2017, he is Vice-president of the European Corrosion Federation EFC (www.efcweb.org) after serving EFC as Chairman of the Scientific and Technology Advisory Committee in the period of 2014–2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahami, S.T., de Kok, J.M.M., Terryn, H. et al. Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review. Front. Chem. Sci. Eng. 11, 465–482 (2017). https://doi.org/10.1007/s11705-017-1641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1641-3

Keywords

Navigation