Skip to main content

Levulinic Acid from Biomass: Synthesis and Applications

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Levulinic acid (LA) is a promising platform chemical that can be obtained from biomass. The potential to obtain useful chemical derivatives from levulinic acid is high due to the presence of both a ketone group and a carboxylic acid group. The synthesis of LA on the laboratory scale has been investigated extensively using homogeneous or heterogeneous catalysts. The highest reported yields of LA from monosaccharides, polysaccharides and lignocellulosic biomass and their reaction conditions are summarized in this chapter. In addition, an overview is given on process technology studies including kinetic models and the status of large scale production of LA from biomass. Levulinic acid derivatives and their application will be presented along with future prospects of LA synthesis in biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Energy Information Administration, International Energy Outlook. 2016, May 2016 (Access date: 14 September 2016). Retrieved from http://www.eia.gov/forecasts/ieo/

  2. Climent MJ, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014;16:516–47.

    Article  CAS  Google Scholar 

  3. de Jong E, Higson A, Walsh P, Wellisch M. Product developments in the bio-based chemicals arena. Biofuels Bioprod Biorefin-Biofpr. 2012;6:606–24.

    Article  CAS  Google Scholar 

  4. Deuss PJ, Barta K, de Vries JG. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Cat Sci Technol. 2014;4:1174–96.

    Article  CAS  Google Scholar 

  5. Sheldon RA. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 2014;16:950–63.

    Article  CAS  Google Scholar 

  6. Morone A, Apte M, Pandey RA. Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sustain Energy Rev. 2015;51:548–65.

    Article  CAS  Google Scholar 

  7. Mukherjee A, Dumont M-J, Raghauan V. Sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy. 2015;72:143–83.

    Article  CAS  Google Scholar 

  8. Pileidis FD, Titirici M-M. Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem. 2016;9:562–82.

    Article  CAS  PubMed  Google Scholar 

  9. Yan K, Jarvis C, Gu J, Yan Y. Production and catalytic transformation of levulinic acid: a platform for speciality chemicals and fuels. Renew Sustain Energy Rev. 2015;51:986–97.

    Article  CAS  Google Scholar 

  10. Rackemann DW, Doherty WOS. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin. 2011;5:198–214.

    Article  CAS  Google Scholar 

  11. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev. 2013;113:1499–597.

    Article  PubMed  CAS  Google Scholar 

  12. Horvat J, Klaic B, Metelko B, Sunjic V. Mechanism of levulinic acid formation. Tetrahedron Lett. 1985;26(17):2111–4.

    Article  CAS  Google Scholar 

  13. Zhang J, Weitz E. An in situ NMR study of the mechanism for the catalytic conversion of fructose to 5-hydroxymethylfurfural and then to levulinic acid using C-13 labeled D-fructose. ACS Catal. 2012;2:1211–8.

    Article  CAS  Google Scholar 

  14. Akien GR, Qi L, Horvath IT. Molecular mapping of the acid catalysed dehydration of fructose. Chem Commun. 2012;48:5850–2.

    Article  CAS  Google Scholar 

  15. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL. Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl. 2000;28:227–39.

    Article  Google Scholar 

  16. Girisuta B, Janssen LPBM, Heeres HJ. A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des. 2006;84:339–49.

    Article  CAS  Google Scholar 

  17. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin. 2010;4:160–77.

    Article  CAS  Google Scholar 

  18. van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem. 2013;6:1745–58.

    Article  PubMed  CAS  Google Scholar 

  19. Hoang TMC, Lefferts L, Seshan K. Valorization of humin-based byproducts from biomass processing-a route to sustainable hydrogen. ChemSusChem. 2013;6:1651–8.

    Article  CAS  PubMed  Google Scholar 

  20. Hoang TMC, van Eck ERH, Bula WP, Gardeniers JGE, Lefferts L, Seshan K. Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chem. 2015;17:959–72.

    Article  CAS  Google Scholar 

  21. Wang Y, Agarwal S, Kloekhorst A, Heeres HJ. Catalytic hydrotreatment of humins in mixtures of formic acid/2-propanol with supported ruthenium catalysts. ChemSusChem. 2016;9:951–61.

    Article  CAS  PubMed  Google Scholar 

  22. Mulder GJ. Untersuchungen über die Humussubstanzen. J Prakt Chem. 1840;21:203–40.

    Article  Google Scholar 

  23. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG. Insights into the Interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(Hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc. 2013;135:3997–4006.

    Article  CAS  PubMed  Google Scholar 

  24. Son PA, Nishimura S, Ebitani K. Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst. React Kinet Mech Catal. 2012;106:185–92.

    Article  CAS  Google Scholar 

  25. Fachri BA, Abdilla RM, van de Bovenkamp HH, Rasrendra CB, Heeres HJ. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustain Chem Eng. 2015;3:3024–34.

    Article  CAS  Google Scholar 

  26. Szabolcs A, Molnar M, Dibo G, Mika LT. Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem. 2013;15:439–45.

    Article  CAS  Google Scholar 

  27. Kuster BFM, Vanderbaan HS. Dehydration of D-fructose (Formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydr Res. 1977;54:165–76.

    Article  CAS  Google Scholar 

  28. Heeres H, Handana R, Chunai D, Rasrendra CB, Girisuta B, Heeres HJ. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to [gamma]-valerolactone using ruthenium catalysts. Green Chem. 2009;11:1247–55.

    Article  CAS  Google Scholar 

  29. Weingarten R, Cho J, Xing R, Conner Jr WC, Huber GW. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. ChemSusChem. 2012;5:1280–90.

    Article  CAS  PubMed  Google Scholar 

  30. Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R. 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl3 in aqueous medium. J Mol Catal a-Chem. 2014;394:114–20.

    Article  CAS  Google Scholar 

  31. Rackemann DW, Bartley JP, Doherty WOS. Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural. Ind Crop Prod. 2014;52:46–57.

    Article  CAS  Google Scholar 

  32. Yang F, Fu J, Mo J, Lu X. Synergy of Lewis and Bronsted acids on catalytic hydrothermal decomposition of hexose to levulinic acid. Energy Fuel. 2013;27:6973–8.

    Article  CAS  Google Scholar 

  33. Tang P, Yu J. kinetic analysis on deactivation of a solid Bronsted acid catalyst in conversion of sucrose to levulinic acid. Ind Eng Chem Res. 2014;53:11629–37.

    Article  CAS  Google Scholar 

  34. Cha JY, Hanna MA. Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crop Prod. 2002;16:109–18.

    Article  CAS  Google Scholar 

  35. Girisuta B, Janssen LPBM, Heeres HJ. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res. 2007;46:1696–708.

    Article  CAS  Google Scholar 

  36. Shen J, Wyman CE. Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J. 2012;58:236–46.

    Article  CAS  Google Scholar 

  37. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules. 2010;15:5258–72.

    Article  CAS  PubMed  Google Scholar 

  38. Ren H, Zhou Y, Liu L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol. 2013;129:616–9.

    Article  CAS  PubMed  Google Scholar 

  39. Shen Y, Sun J-K, Yi Y-X, Wang B, Xu F, Sun R-C. One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol. 2015;192:812–6.

    Article  CAS  PubMed  Google Scholar 

  40. Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol. 2008;99:8367–75.

    Article  CAS  PubMed  Google Scholar 

  41. Runge T, Zhang C. Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Ind Eng Chem Res. 2012;51:3265–70.

    Article  CAS  Google Scholar 

  42. Galletti AMR, Antonetti C, De Luise V, Licursi D, Di Nasso NNO. Levulinic acid production from waste biomass. Bioresources. 2012;7:1824–35.

    Google Scholar 

  43. Antonetti C, Bonari E, Licursi D, Di Nasso NNO, Galletti AMR. Hydrothermal conversion of giant reed to furfural and levulinic acid: optimization of the process under microwave irradiation and investigation of distinctive agronomic parameters. Molecules. 2015;20:21232–53.

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Jiang Z, Hu L, Hu C. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem. 2014;7:2482–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Pu YQ, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:1–8.

    Article  Google Scholar 

  46. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng. 2014;111:485–92.

    Article  CAS  PubMed  Google Scholar 

  47. Lee H-J, Sanyoto B, Choi J-W, Ha J-M, Suh DJ, Lee K-Y. Effects of lignin on the ionic-liquid assisted catalytic hydrolysis of cellulose: chemical inhibition by lignin. Cellulose. 2013;20:2349–58.

    Article  CAS  Google Scholar 

  48. Dussan, K. Primary conversion of lignocellulosic biomass for the production of furfural and levulinic acid (PhD Thesis) University of Limerick. 2014.

    Google Scholar 

  49. Upare PP, Yoon J-W, Kim MY, Kang H-Y, Hwang DW, Hwang YK, Kung HH, Chang J-S. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 2013;15:2935–43.

    Article  CAS  Google Scholar 

  50. Jow J, Rorrer GL, Hawley MC. Dehydration of D-fructose to levulinic acid over LZY zeolite catalyst. Biomass. 1987;14:185–94.

    Article  CAS  Google Scholar 

  51. Yu F, Thomas J, Smet M, Dehaen W, Sels BF. Molecular design of sulfonated hyperbranched poly(arylene oxindole)s for efficient cellulose conversion to levulinic acid. Green Chem. 2016;18:1694–705.

    Article  CAS  Google Scholar 

  52. Ahlkvist J, Ajaikumar S, Larsson W, Mikkola J-P. One-pot catalytic conversion of Nordic pulp media into green platform chemicals. Appl Catal a-General. 2013;454:21–9.

    Article  CAS  Google Scholar 

  53. Ramli NAS, Amin NAS. Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst. Chem Eng J. 2016;283:150–9.

    Article  CAS  Google Scholar 

  54. Suacharoen S, Tungasmita DN. Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate. J Chem Technol Biotechnol. 2013;88:1538–44.

    Article  CAS  Google Scholar 

  55. Joshi SS, Zodge AD, Pandare KV, Kulkarni BD. Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Ind Eng Chem Res. 2014;53:18796–805.

    Article  CAS  Google Scholar 

  56. Ding D, Wang J, Xi J, Liu X, Lu G, Wang Y. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone. Green Chem. 2014;16:3846–53.

    Article  CAS  Google Scholar 

  57. Putro JN, Kurniawan A, Soetaredjo FE, Lin S-Y, Ju Y-H, Ismadji S. Production of gamma-valerolactone from sugarcane bagasse over TiO2-supported platinum and acid-activated bentonite as a co-catalyst. RSC Adv. 2015;5:41285–99.

    Article  CAS  Google Scholar 

  58. Ya'aini N, Amin NAS, Asmadi M. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresour Technol. 2012;116:58–65.

    Article  PubMed  CAS  Google Scholar 

  59. Wettstein SG, Alonso DM, Chong Y, Dumesic JA. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ Sci. 2012;5:8199–203.

    Article  CAS  Google Scholar 

  60. Amiri H, Karimi K, Roodpeyma S. Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res. 2010;345:2133–8.

    Article  CAS  PubMed  Google Scholar 

  61. Saeman JF. Kinetics of wood saccharification – hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Indust Eng Chem. 1945;37:43.

    Article  CAS  Google Scholar 

  62. Girisuta B, Dussan K, Haverty D, Leahy JJ, Hayes MHB. A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J. 2013;217:61–70.

    Article  CAS  Google Scholar 

  63. Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MHB. Kinetics of levulinic acid and furfural production from Miscanthus x giganteus. Bioresour Technol. 2013;149:216–24.

    Article  CAS  PubMed  Google Scholar 

  64. Jing Q, Lu XY. Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chin J Chem Eng. 2008;16:890–4.

    Article  CAS  Google Scholar 

  65. Serrano-Ruiz JC, Braden DJ, West RM, Dumesic JA. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Appl Catal B Environ. 2010;100:184–9.

    Article  CAS  Google Scholar 

  66. Dunlop AP, Wells JPA. Process for producing levulinic acid US. 1957:2813900.

    Google Scholar 

  67. Hoving HD, Rijke DEA, Wagemans GMC, Parton RFMJ, Babic K. Process for the separation of levulinic acid from biomass WO. 2014:2014037560.

    Google Scholar 

  68. Fitzpatrick SW. Production of levulinic acid from carbohydrate-containing materials. US. 1997;5:608,105.

    Google Scholar 

  69. Hayes DJ, Fitzpatrick SW, Hayes MHB, Ross JRH. The biofine process – production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M, editors. Biorefineries – industrial processes and products: status Quo and future directions. vol 1. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  70. de Guzman D. Segetis starts levulinic acid pilot production (Access date: 16 December 2016). Retrieved from http://greenchemicalsblog.com/2013/10/10/segetis-starts-levulinic-acid-pilot-production/

  71. Lane J. GFBiochemicals acquires Segetis, enters the US market (Access date: 16 December 2016). Retrieved from http://www.biofuelsdigest.com/bdigest/2016/02/19/gfbiochemicals-acquires-segetis-enters-the-us-market/

  72. Guo YH, Li KX, Yu XD, Clark JH. Mesoporous H3PW12O40-silica composite: Efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B-Environ. 2008;81:182–91.

    Article  CAS  Google Scholar 

  73. Bader AR, Kontowicz AD. γ,γ-Bis-(p-hydroxyphenyl)-valeric Acid. J Am Chem Soc. 1954;76(17):4465–6.

    Google Scholar 

  74. Yu XD, Guo YH, Li KX, Yang X, Xu LL, Guo YN, Hu JL. Catalytic synthesis of diphenolic acid from levulinic acid over cesium partly substituted Wells-Dawson type heteropolyacid. J Mol Catal a-Chem. 2008;290:44–53.

    Article  CAS  Google Scholar 

  75. Shen Y, Sun JK, Wang B, Xu F, Sun RC. Catalytic synthesis of diphenolic acid from levulinic acid over bronsted acidic ionic liquids. Bioresources. 2014;9:3264–75.

    Google Scholar 

  76. Van de Vyver S, Geboers J, Helsen S, Yu F, Thomas J, Smet M, Dehaen W, Sels BF. Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s. Chem Commun. 2012;48:3497–9.

    Article  CAS  Google Scholar 

  77. Manzer LE. Production of 5-methyl-N-(methyl aryl)-2-pyrrolidone, 5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds. 2005; US 6841520.

    Google Scholar 

  78. Manzer L, Herkes F. Production of 5-methyl-1-hydrocarbyl-2-pyrrolidone by reductive amination of levulinic acid. 2004; US 2004192933.

    Google Scholar 

  79. Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J. Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun. 2013;49:5408–10.

    Article  CAS  Google Scholar 

  80. Touchy AS, Siddiki SMAH, Kon K, Shimizu K-i. Heterogeneous Pt catalysts for reductive amination of levulinic acid to pyrrolidones. ACS Catal. 2014;4:3045–50.

    Article  CAS  Google Scholar 

  81. Chieffi G, Braun M, Esposito D. Continuous reductive amination of biomass-derived molecules over carbonized filter paper-supported FeNi alloy. ChemSusChem. 2015;8:3590–4.

    Article  CAS  PubMed  Google Scholar 

  82. Ogiwara Y, Uchiyama T, Sakai N. Reductive amination/cyclization of keto acids using a hydrosilane for selective production of lactams versus cyclic amines by switching of the indium catalyst. Angewandte Chemie-International Edition. 2016;55:1864–7.

    Article  CAS  PubMed  Google Scholar 

  83. Leibig C, Mullen B, Mullen T, Rieth L, Badarinarayana V. Cellulosic-derived levulinic ketal esters: a new building block, in renewable and sustainable polymers. In: Payne GF, Smith PB, editors. American Chemical Society. 2011; p. 111–116.

    Google Scholar 

  84. Selifonov S, Rothstein SD, Mullen BD. Method of Making Ketals and Acetals US. 2010:20100292491.

    Google Scholar 

  85. Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol. 2014;98:7349–57.

    Article  CAS  PubMed  Google Scholar 

  86. Rebeiz CA, Montazer-Zouhoor A, Hopen HJ, Wu SM. Photodynamic herbicides: 1. Concept and phenomenology. Enzym Microb Technol. 1984;6:390–6.

    Article  CAS  Google Scholar 

  87. Sasaki K, Watanabe M, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol. 2002;58:23–9.

    Article  CAS  PubMed  Google Scholar 

  88. Colditz MJ, Jeffree RL. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: clinical, radiological and pathological studies. J Clin Neurosci. 2012;19:1471–4.

    Article  CAS  PubMed  Google Scholar 

  89. Podolean L, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem. 2013;15:3077–82.

    Article  CAS  Google Scholar 

  90. Dutta S, Wu L, Mascal M. Efficient, metal-free production of succinic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. Green Chem. 2015;17:2335–8.

    Article  CAS  Google Scholar 

  91. Wu L, Dutta S, Mascal M. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. ChemSusChem. 2015;8:1167–9.

    Article  CAS  PubMed  Google Scholar 

  92. Alonso DM, Wettstein SG, Dumesic JA. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013;15:584–95.

    Article  CAS  Google Scholar 

  93. Horvath IT. Green or sustainable chemistry or both? Chem Tod. 2014;32:76–9.

    Google Scholar 

  94. Yan K, Yang Y, Chai J, Lu Y. Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl Catal B-Environ. 2015;179:292–304.

    Article  CAS  Google Scholar 

  95. Zhang Z. Synthesis of gamma-valerolactone from carbohydrates and its applications. ChemSusChem. 2016;9:156–71.

    Article  CAS  PubMed  Google Scholar 

  96. Manzer LE. Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen. 2004;272:249–56.

    Article  CAS  Google Scholar 

  97. Wong PK, Li C, Stubbs L, van Meurs M, Anak Kumbang DG, Lim SCY, Drent E. Synth Diacids. 2012:WO 2012134397.

    Google Scholar 

  98. Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV. Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl Catal a-General. 2013;460:90–8.

    Article  CAS  Google Scholar 

  99. Pasquale G, Vazquez P, Romanelli G, Baronetti G. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal Commun. 2012;18:115–20.

    Article  CAS  Google Scholar 

  100. Su F, Ma L, Song D, Zhang X, Guo Y. Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph)Si hybrid catalyst for methyl levulinate synthesis. Green Chem. 2013;15:885–90.

    Article  CAS  Google Scholar 

  101. Melero JA, Morales G, Iglesias J, Paniagua M, Hernandez B, Penedo S. Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl Catal a-General. 2013;466:116–22.

    Article  CAS  Google Scholar 

  102. Patil CR, Niphadkar PS, Bokade VV, Joshi PN. Esterification of levulinic acid to ethyl levulinate over bimodal micro-mesoporous H/BEA zeolite derivatives. Catal Commun. 2014;43:188–91.

    Article  CAS  Google Scholar 

  103. Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal a-General. 2012;425:199–204.

    Article  CAS  Google Scholar 

  104. Kuwahara Y, Fujitani T, Yamashita H. Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: influences of the preparation conditions on the structural properties and catalytic performances. Catal Today. 2014;237:18–28.

    Article  CAS  Google Scholar 

  105. Li Z, Wnetrzak R, Kwapinski W, Leahy JJ. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid. ACS Appl Mater Interfaces. 2012;4:4499–505.

    Article  CAS  PubMed  Google Scholar 

  106. Hu X, Li C-Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chem. 2011;13:1676–9.

    Article  CAS  Google Scholar 

  107. Saravanamurugan S, Nguyen Van Buu O, Riisager A. Conversion of mono- and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid-functionalized ionic liquids. ChemSusChem. 2011;4:723–6.

    Article  CAS  PubMed  Google Scholar 

  108. Hishikawa Y, Yamaguchi M, Kubo S, Yamada T. Direct preparation of butyl levulinate by a single solvolysis process of cellulose. J Wood Sci. 2013;59:179–82.

    Article  CAS  Google Scholar 

  109. Demolis A, Essayem N, Rataboul F. Synthesis and applications of alkyl levulinates. ACS Sustain Chem Eng. 2014;2:1338–52.

    Article  CAS  Google Scholar 

  110. Bianchi, D., Romano AM. Process for the production of esters of levulinic acid from biomasses. 2008;WO2009-156842A1.

    Google Scholar 

  111. Mascal M, Nikitin EB. Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem. 2010;3:1349–51.

    Article  CAS  PubMed  Google Scholar 

  112. Balakrishnan M, Sacia ER, Bell AT. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem. 2012;14:1626–34.

    Article  CAS  Google Scholar 

  113. Wu X, Fu J, Lu X. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol. Carbohydr Res. 2012;358:37–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kang S, Yu J. Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res. 2015;54:11552–9.

    Article  CAS  Google Scholar 

  115. Liu R, Chen J, Huang X, Chen L, Ma L, Li X. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem. 2013;15:2895–903.

    Article  CAS  Google Scholar 

  116. Peng L, Lin L, Li H, Yang Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl Energy. 2011;88:4590–6.

    Article  CAS  Google Scholar 

  117. Kuo C-H, Poyraz AS, Jin L, Meng Y, Pahalagedara L, Chen S-Y, Kriz DA, Guild C, Gudz A, Suib SL. Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates. Green Chem. 2014;16:785–91.

    Article  CAS  Google Scholar 

  118. Christensen E, Williams A, Paul S, Burton S, McCormick RL. Properties and performance of levulinate esters as diesel blend components. Energy Fuel. 2011;25:5422–8.

    Article  CAS  Google Scholar 

  119. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H. Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed. 2010;49:4479–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buana Girisuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Girisuta, B., Heeres, H.J. (2017). Levulinic Acid from Biomass: Synthesis and Applications. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_5

Download citation

Publish with us

Policies and ethics