Skip to main content

Advertisement

Log in

Antibiotika-resistente Erreger in Deutschland

Die Rolle von nicht nosokomialen Ansteckungsquellen

Multidrug-resistant bacteria in Germany

The impact of sources outside healthcare facilities

  • Originalien und Übersichten
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Hintergrund

Die Frage, ob die zunehmende Verbreitung von Erregern mit Antibiotika-Multiresistenzen (MRE) beim Menschen durch Übertragungen von Tieren erklärbar ist, wird öffentlich diskutiert.

Ziel der Arbeit

Diese Übersichtsarbeit trägt Daten zum Vorkommen von Methicillin-resistenten Staphylococcus aureus (MRSA) und Extended-Spectrum Beta-Lactamase (ESBL) bildenden Enterobakterien bei Mensch und Tier zusammen und beschreibt die Erkenntnisse zur zoonotischen Transmission.

Material und Methoden

Es wurde eine Literaturrecherche durchgeführt. Relevante Literatur wurde durch Screening von Überschriften und Abstracts identifiziert und ergänzt durch Publikationen von Infektionsschutzbehörden bzw. die dort zitierten Originalarbeiten.

Ergebnisse

Es zeigte sich eine Vielzahl nosokomialer Verbreitungswege von MRE sowie eine zunehmende Relevanz von außerhalb des Gesundheitswesens gelegenen Infektionsquellen.

Diskussion

Für eine effektive Prävention von MRE ist ein interdisziplinärer Ansatz notwendig, der sowohl die Grenzen medizinischer und pharmazeutischer Fachgebiete als auch die Grenzen zwischen Human- und Veterinärmedizin überschreitet.

Abstract

Background

Currently, there is an ongoing discussion about the question whether the emergence of multidrug-resistant microorganisms (MDRO) among humans is due to transfer of these bacteria from animals.

Objectives

This review summarizes data on the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL) producing enterobacteria in animals and humans, and describes knowledge about transmission pathways.

Material and methods

After a scientific literature analysis, relevant articles were identified by screening of titles and abstracts, amended by publications of infection control authorities and the respective reference lists.

Results

MDRO are both transmitted in the nosocomial setting and are increasingly detected as sources of infection outside healthcare facilities.

Conclusions

Due to new transmission pathways of MDRO an inter-disciplinary approach towards prevention is necessary, involving medical, pharmaceutical and veterinary expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 55:1311–1354

    Article  Google Scholar 

  2. Kaase M (2014) Bericht des Nationalen Referenzzentrums für gramnegative Krankenhauserreger (1. Januar 2013 bis 31. Dezember 2013). EpiBull 43:421–425

    Google Scholar 

  3. Wellington EM, Boxall AB, Cross P et al (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13:155–165

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Blazquez J (2013) Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 303:293–297

    Article  PubMed  CAS  Google Scholar 

  5. Mehraj J, Akmatov MK, Strompl J et al (2014) Methicillin-sensitive and methicillin-resistant Staphylococcus aureus nasal carriage in a random sample of non-hospitalized adult population in northern Germany. PLoS One 9:e107937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Herrmann M, Petit C, Dawson A et al (2013) Methicillin-resistant Staphylococcus aureus in Saarland, Germany: a statewide admission prevalence screening study. PLoS One 8:e73876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Köck R, Mellmann A, Schaumburg F, Friedrich AW, Kipp F, Becker K (2011) The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Germany. Dtsch Arztebl Int 108:761–767

    PubMed  PubMed Central  Google Scholar 

  8. Wegner C, Hübner NO, Gleich S, Thalmaier U, Krüger CM, Kramer A (2013) One-day point prevalence of emerging bacterial pathogens in a nationwide sample of 62 German hospitals in 2012 and comparison with the results of the one-day point prevalence of 2010. GMS Hyg Infect Control 8(1):Doc12

  9. Gruber I, Heudorf U, Werner G et al (2013) Multidrug-resistant bacteria in geriatric clinics, nursing homes, and ambulant care–prevalence and risk factors. Int J Med Microbiol 303:405–409

    Article  PubMed  Google Scholar 

  10. Heudorf U, Gustav C, Mischler D, Schulze J (2014) Healthcare associated infections (HAI), antibiotic use and prevalence of multidrug-resistant bacteria (MDRO) in residents of long-term care facilities: the Frankfurt HALT plus MDRO project 2012. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 57:414–422

    Article  CAS  Google Scholar 

  11. Valenza G, Nickel S, Pfeifer Y et al (2014) Extended-spectrum-beta-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob Agents Chemother 58:1228–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Belmar Campos C, Fenner I, Wiese N et al (2014) Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int J Med Microbiol 304:678–684

    Article  PubMed  CAS  Google Scholar 

  13. Meyer E, Gastmeier P, Kola A, Schwab F (2012) Pet animals and foreign travel are risk factors for colonisation with extended-spectrum beta-lactamase-producing Escherichia coli. Infection 40:685–687

    Article  PubMed  CAS  Google Scholar 

  14. Lübbert C, Straube L, Stein C et al (2015) Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 305:148–156

    Article  PubMed  Google Scholar 

  15. Ehrhard I, Karaalp AK, Hackel T et al (2014) Prevalence of carbapenemase-producing bacteria in hospitals in Saxony, Germany. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 57:406–413

    Article  CAS  Google Scholar 

  16. Vehreschild MJ, Hamprecht A, Peterson L et al (2014) A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother 69:3387–3392

    Article  PubMed  CAS  Google Scholar 

  17. Arvand M, Moser V, Pfeifer Y (2013) Prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli and spread of the epidemic clonal lineage ST131 in nursing homes in Hesse, Germany. J Antimicrob Chemother 68:2686–2688

    Article  PubMed  CAS  Google Scholar 

  18. Maechler F, Pena Diaz LA, Schröder C, Geffers C, Behnke M, Gastmeier P (2015) Prevalence of carbapenem-resistant organisms and other Gram-negative MDRO in German ICUs: first results from the national nosocomial infection surveillance system (KISS). Infection 43:163–168

    Article  PubMed  CAS  Google Scholar 

  19. Hering J, Hille K, Fromke C et al (2014) Prevalence and potential risk factors for the occurrence of cefotaxime resistant Escherichia coli in German fattening pig farms – A cross-sectional study. Prev Vet Med 116:129–137

    Article  PubMed  Google Scholar 

  20. Friese A, Schulz J, Laube H, von Salviati C, Hartung J, Roesler U (2013) Faecal occurrence and emissions of livestock-associated methicillin-resistant Staphylococcus aureus (laMRSA) and ESbl/AmpC-producing E. coli from animal farms in Germany. Berl Munch Tierarztl Wochenschr 126:175–180

    PubMed  Google Scholar 

  21. Laube H, Friese A, von Salviati C et al (2013) Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl Environ Microbiol 79:4815–4820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schmid A, Hormansdorfer S, Messelhausser U, Käsbohrer A, Sauter-Louis C, Mansfeld R (2013) Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli on bavarian dairy and beef cattle farms. Appl Environ Microbiol 79:3027–3032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hille K, Fischer J, Falgenhauer L et al (2014) On the occurence of Extended-spectrum- and AmpC-betalactamase- producing Escherichia coli in livestock: results of selected European studies. Berl Munch Tierarztl Wochenschr 127:403–411

    PubMed  Google Scholar 

  24. Köck R, Harlizius J, Bressan N et al (2009) Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur J Clin Microbiol Infect Dis 28:1375–1382

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) (2010) Berichte zur Lebensmittelsicherheit 2009: Zoonosen-Monitoring. Springer, Basel

  26. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) (2012) Berichte zur Lebensmittelsicherheit 2010: Zoonosen-Monitoring. Springer, Basel

  27. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) (2013) Berichte zur Lebensmittelsicherheit 2011: Zoonosen-Monitoring. Springer, Basel

  28. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) (2014) Berichte zur Lebensmittelsicherheit 2012: Zoonosen-Monitoring. Springer, Basel

  29. Kola A, Kohler C, Pfeifer Y et al (2012) High prevalence of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J Antimicrob Chemother 67:2631–2634

    Article  PubMed  CAS  Google Scholar 

  30. Sharp H, Valentin L, Fischer J, Guerra B, Appel B, Käsbohrer A (2014) Estimation of the transfer of ESBL-producing Escherichia coli to humans in Germany. Berl Munch Tierarztl Wochenschr 127:464–477

    PubMed  Google Scholar 

  31. Beneke B, Klees S, Stuhrenberg B, Fetsch A, Kraushaar B, Tenhagen BA (2011) Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain. J Food Prot 74:126–129

    Article  PubMed  Google Scholar 

  32. Feßler AT, Kadlec K, Hassel M et al (2011) Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microbiol 77:7151–7157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Reuland EA, Al Naiemi N, Raadsen SA, Savelkoul PH, Kluytmans JA, Vandenbroucke-Grauls CM (2014) Prevalence of ESBL-producing Enterobacteriaceae in raw vegetables. Eur J Clin Microbiol Infect Dis 33:1843–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. von Salviati C, Laube H, Guerra B, Roesler U, Friese A (2015) Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet Microbiol 175:77–84

    Article  CAS  Google Scholar 

  35. Schulz J, Friese A, Klees S et al (2012) LA-MRSA contamination of air and soil surfaces in the vicinity of pig barns: a longitudinal study. Appl Environ Microbiol 78:5666–5671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Friese A, Schulz J, Hoehle L et al (2012) Occurrence of MRSA in air and housing environment of pig barns. Vet Microbiol 158:129–135

    Article  PubMed  Google Scholar 

  37. Laube H, Friese A, von Salviati C, Guerra B, Rösler U (2014) Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet Microbiol 172:519–527

    Article  PubMed  CAS  Google Scholar 

  38. Friese A, Schulz J, Zimmermann K et al (2013) Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in turkey and broiler barns and contamination of air and soil surfaces in their vicinity. Appl Environ Microbiol 79:2759–2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ewers C, Bethe A, Stamm I et al (2014) CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230

    Article  PubMed  CAS  Google Scholar 

  40. Ewers C, Grobbel M, Bethe A, Wieler LH, Guenther S (2011) Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Berl Munch Tierarztl Wochenschr 124:94–101

    PubMed  Google Scholar 

  41. Weese JS (2007) MRSA infection in horses. Vet Rec 161:359–360

    Article  PubMed  Google Scholar 

  42. Seguin JC, Walker RD, Caron JP et al (1999) Methicillin-resistant Staphylococcus aureus outbreak in a veterinary teaching hospital: potential human-to-animal transmission. J Clin Microbiol 37:1459–1463

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Dargatz DA, Traub-Dargatz JL (2004) Multidrug-resistant Salmonella and nosocomial infections. Vet Clin North Am Equine Pract 20:587–600

    Article  PubMed  Google Scholar 

  44. Boerlin P, Eugster S, Gaschen F, Straub R, Schawalder P (2001) Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet Microbiol 82:347–359

    Article  PubMed  CAS  Google Scholar 

  45. Stolle I, Prenger-Berninghoff E, Stamm I et al (2013) Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68:2802–2808

    Article  PubMed  CAS  Google Scholar 

  46. Vincze S, Stamm I, Kopp PA et al (2014) Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS One 9:e85656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Maddox TW, Clegg PD, Diggle PJ et al (2012) Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 1: prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet J 44:289–296

    Article  PubMed  CAS  Google Scholar 

  48. Guenther S, Aschenbrenner K, Stamm I et al (2012) Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7:e53039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Guenther S, Bethe A, Fruth A et al (2012) Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. PLoS One 7:e50331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Guenther S, Ewers C, Wieler LH (2011) Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246

    Article  PubMed  PubMed Central  Google Scholar 

  51. GERMAP 2012: Antibiotika-Resistenz und -Verbrauch – Bericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und Veterinärmedizin in Deutschland. 2014. http://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2012.pdf?__blob=publicationFile&v=4. Zugegriffen: 1. Feb. 2015

  52. Schink AK, Kadlec K, Kaspar H, Mankertz J, Schwarz S (2013) Analysis of extended-spectrum-beta-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother 68:1741–1749

    Article  PubMed  CAS  Google Scholar 

  53. Köck R, Ballhausen B, Bischoff M et al (2014) The burden of zoonotic MRSA colonization and infection in Germany. Berl Munch Tierarztl Wochenschr 127:384–398

    PubMed  Google Scholar 

  54. Layer F, Cuny C, Strommenger B, Werner G, Witte W (2012) [Current data and trends on methicillin-resistant Staphylococcus aureus (MRSA)]. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 55:1377–1386

    Article  CAS  Google Scholar 

  55. Schaumburg F, Köck R, Mellmann A et al (2012) Population dynamics among methicillin resistant Staphylococcus aureus in Germany during a 6-year period. J Clin Microbiol 50:3186–3192

    Article  PubMed  PubMed Central  Google Scholar 

  56. Köck R, Schaumburg F, Mellmann A et al (2013) Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One 8:e55040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Becker K, Ballhausen B, Köck R, Kriegeskorte A (2014) Methicillin resistance in Staphylococcus isolates: the „mec alphabet“ with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol 304:794–804

    Article  PubMed  CAS  Google Scholar 

  58. Kriegeskorte A, Ballhausen B, Idelevich EA et al (2012) Human MRSA isolates with novel genetic homolog, Germany. Emerg Infect Dis 18:1016–1018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cuny C, Layer F, Strommenger B, Witte W (2011) Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6:e24360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Walther B, Wieler LH, Vincze S et al (2012) MRSA variant in companion animals. Emerg Infect Dis 18:2017–2020

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH (2012) Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18:646–655

    Article  PubMed  CAS  Google Scholar 

  62. Richter A, Sting R, Popp C et al (2012) Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiol Infect 140 2223–2232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dahms C, Hübner NO, Cuny C, Kramer A (2014) Occurrence of methicillin-resistant Staphylococcus aureus in farm workers and the livestock environment in Mecklenburg-Western Pomerania, Germany. Acta Vet Scand 56:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2014) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus-aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 57:696–732

    Google Scholar 

  65. Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D (2013) Extended-spectrum-beta-lactamase- and AmpC-beta-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother 68:60–67

    Article  PubMed  CAS  Google Scholar 

  66. Köck R, Loth B, Koksal M, Schulte-Wulwer J, Harlizius J, Friedrich AW (2012) Persistence of nasal colonization with livestock-associated methicillin-resistant Staphylococcus aureus in pig farmers after holidays from pig exposure. Appl Environ Microbiol 78:4046–4047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Deiters C, Günnewig V, Friedrich AW, Mellmann A, Köck R (2015) Are cases of Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 among humans still livestock-associated? Int J Med Microbiol 305:110–113

    Article  PubMed  Google Scholar 

  68. Feingold BJ, Silbergeld EK, Curriero FC, van Cleef BA, Heck ME, Kluytmans JA (2012) Livestock density as risk factor for livestock-associated methicillin-resistant Staphylococcus aureus, the Netherlands. Emerg Infect Dis 18:1841–1849

    Article  PubMed  PubMed Central  Google Scholar 

  69. van Rijen MM, Bosch T, Verkade EJ, Schouls L, Kluytmans JA, Group CAMS (2014) Livestock-associated MRSA carriage in patients without direct contact with livestock. PLoS One 9:e100294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bisdorff B, Scholholter JL, Claussen K, Pulz M, Nowak D, Radon K (2012) MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany. Epidemiol Infect 140:1800–1808

    Article  PubMed  CAS  Google Scholar 

  71. Dahms C, Hübner NO, Wilke F, Kramer A (2014) Mini-review: Epidemiology and zoonotic potential of multiresistant bacteria and Clostridium difficile in livestock and food. GMS Hyg Infect Control 9:Doc21

    PubMed  PubMed Central  Google Scholar 

  72. Wendlandt S, Schwarz S, Silley P (2013) Methicillin-resistant Staphylococcus aureus: a food-borne pathogen? Annu Rev Food Sci Technol 4:117–139

    Article  PubMed  CAS  Google Scholar 

  73. Bundesinstitut für Risikobewertung (2009) Menschen können sich über den Kontakt mit Nutztieren mit Methicillin-resistenten Staphylococcus aureus (MRSA) infizieren. Stellungnahme Nr. 014/2009. http://www.bfr.bund.de/cm/208/menschen_koennen_sich_ueber_den_kontakt_mit_nutztieren_mit_mrsa_infizieren.pdf. Zugegriffen: 9. Juni 2015

  74. Vincze S, Brandenburg AG, Espelage W et al (2014) Risk factors for MRSA infection in companion animals: results from a case-control study within Germany. Int J Med Microbiol 304:787–793

    Article  PubMed  Google Scholar 

  75. Nienhoff U, Kadlec K, Chaberny IF et al (2009) Transmission of methicillin-resistant Staphylococcus aureus strains between humans and dogs: two case reports. J Antimicrob Chemother 64:660–662

    Article  PubMed  CAS  Google Scholar 

  76. Abdelbary MM, Wittenberg A, Cuny C et al (2014) Phylogenetic analysis of Staphylococcus aureus CC398 reveals a sub-lineage epidemiologically associated with infections in horses. PLoS One 9:e88083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Schmiedel J, Falgenhauer L, Domann E et al (2014) Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 14:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Leistner R, Meyer E, Gastmeier P et al (2013) Risk factors associated with the community-acquired colonization of extended-spectrum beta-lactamase (ESBL) positive Escherichia Coli. An exploratory case-control study. PLoS One 8:e74323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Königer D, Gastmeier P, Kola A, Schwab F, Meyer E (2014) Vegetarians are not less colonized with extended-spectrum-beta-lactamase-producing bacteria than meat eaters. J Antimicrob Chemother 69:281–282

    Article  PubMed  CAS  Google Scholar 

  80. Kluytmans JA, Overdevest IT, Willemsen I et al (2013) Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis 56:478–487

    Article  PubMed  CAS  Google Scholar 

  81. Valentin L, Sharp H, Hille K et al (2014) Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol 304:805–816

    Article  PubMed  Google Scholar 

  82. Bundesinstitut für Risikobewertung (2011) ESBL-bildende Bakterien in Lebensmitteln und deren Übertragbarkeit auf den Menschen. Stellungnahme Nr. 002/2012 des BfR vom 5. Dezember 2011. http://www.bfr.bund.de/cm/343/esbl-bildende-bakterien-in-lebensmitteln-und-deren-uebertragbarkeit-auf-den-menschen.pdf. Zugegriffen: 12. Jan. 2015

  83. von Wintersdorff CJ, Penders J, Stobberingh EE et al (2014) High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 20:649–657

    Article  CAS  Google Scholar 

  84. Jorgensen SB, Samuelsen O, Sundsfjord A et al (2014) High prevalence of faecal carriage of ESBL-producing Enterobacteriaceae in Norwegian patients with gastroenteritis. Scand J Infect Dis 46:462–465

    Article  PubMed  CAS  Google Scholar 

  85. Tham J, Walder M, Melander E, Odenholt I (2012) Duration of colonization with extended-spectrum beta-lactamase-producing Escherichia coli in patients with travellersʼ diarrhoea. Scand J Infect Dis 44:573–577

    Article  PubMed  Google Scholar 

  86. Mutters NT, Mersch-Sundermann V, Mutters R, Brandt C, Schneider-Brachert W, Frank U (2013) Control of the spread of vancomycin-resistant Enterococci in hospitals: epidemiology and clinical relevance. Dtsch Arztebl Int 110:725–731

    PubMed  PubMed Central  Google Scholar 

  87. Verkade E, van Benthem B, den Bergh MK et al (2013) Dynamics and determinants of Staphylococcus aureus carriage in livestock veterinarians: a prospective cohort study. Clin Infect Dis 57:e11–e17

    Article  Google Scholar 

  88. Nathaus R, Schulz J, Hartung J et al (2011) [Investigations into the use of respiratory masks for reducing the MRSA-exposure of veterinarians visiting regularly pig herds – first experiences]. Berl Munch Tierarztl Wochenschr 124:128–135

    PubMed  Google Scholar 

  89. Ballhausen B, Jung P, Kriegeskorte A et al (2014) LA-MRSA CC398 differ from classical community acquired-MRSA and hospital acquired-MRSA lineages: functional analysis of infection and colonization processes. Int J Med Microbiol 304:777–786

    Article  PubMed  CAS  Google Scholar 

  90. Köck R, Becker K, Cookson B et al (2014) Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Euro Surveill 19:pii: 20860

  91. Jurke A, Köck R, Becker K et al (2013) Reduction of the nosocomial meticillin-resistant Staphylococcus aureus incidence density by a region-wide search and follow-strategy in forty German hospitals of the EUREGIO, 2009 to 2011. Euro Surveill 18:pii=20579

  92. Blouin DD (2008) All in the family? understanding the meaning of dogs and cats in the Lives of American pet owners. Indiana University, Bloomington

    Google Scholar 

  93. Walther B, Hermes J, Cuny C et al (2012) Sharing more than friendship – nasal colonization with coagulase-positive Staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS One 7:e35197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sasaki T, Hirai I, Niki M et al (2010) High prevalence of CTX-M beta-lactamase-producing Enterobacteriaceae in stool specimens obtained from healthy individuals in Thailand. J Antimicrob Chemother 65:666–668

    Article  PubMed  CAS  Google Scholar 

  95. Luvsansharav UO, Hirai I, Nakata A et al (2012) Prevalence of and risk factors associated with faecal carriage of CTX-M beta-lactamase-producing Enterobacteriaceae in rural Thai communities. J Antimicrob Chemother 67:1769–1774

    Article  PubMed  CAS  Google Scholar 

  96. Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V (2014) Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health 108:235–245

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hsueh PR, Hoban DJ, Carmeli Y et al (2011) Consensus review of the epidemiology and appropriate antimicrobial therapy of complicated urinary tract infections in Asia-Pacific region. J Infect 63:114–123

    Article  PubMed  Google Scholar 

  98. Bajpai T, Shrivastava G, Bhatambare GS, Deshmukh AB, Chitnis V (2013) Microbiological profile of lower respiratory tract infections in neurological intensive care unit of a tertiary care center from Central India. J Basic Clin Pharm 4:51–55

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Boxall AB, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  PubMed  PubMed Central  Google Scholar 

  101. Larsson DG (2014) Antibiotics in the environment. Ups J Med Sci 119:108–112

    Article  PubMed  PubMed Central  Google Scholar 

  102. Johnning A, Moore ER, Svensson-Stadler L, Shouche YS, Larsson DG, Kristiansson E (2013) Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol 79:7256–7263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rutgersson C, Fick J, Marathe N et al (2014) Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol 48:7825–7832

    Article  PubMed  CAS  Google Scholar 

  104. Ahmad A, Patel I, Mohanta G, Balkrishnan R (2014) Evaluation of self medication practices in rural area of town Sahaswan at northern India. Ann Med Health Sci Res 4:S73–S78

    Article  Google Scholar 

  105. Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges river. Environ Sci Technol 48:3014–3020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Larsson DG (2014) Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc Lond B Biol Sci 369(1656) doi: 10.1098/rstb.2013.0571

  107. Graham DW, Collignon P, Davies J, Larsson DG, Snape J (2014) Underappreciated role of regionally poor water quality on globally increasing antibiotic resistance. Environ Sci Technol 48:11746–11747

    Article  PubMed  CAS  Google Scholar 

  108. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DG (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:648

    Article  PubMed  PubMed Central  Google Scholar 

  109. Larsson DG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  PubMed  CAS  Google Scholar 

  110. Lubbert C, Lippmann N, Busch T et al (2014) Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae after a large single-center outbreak in Germany. Am J Infect Control 42:376–380

    Article  PubMed  Google Scholar 

  111. Jans B, Daniel Huang TD, Bauraing C et al (2015) Infection due to travel-related carbapenemase-producing Enterobacteriaceae, a largely underestimated phenomenon in Belgium. Acta Clin Belg 70(3):181–187. doi:10.1179/2295333715Y.0000000001

    Article  PubMed  CAS  Google Scholar 

  112. Osterblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M, Jalava J (2012) Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008–11). J Antimicrob Chemother 67:2860–2864

    Article  PubMed  CAS  Google Scholar 

  113. Kocsis E, Savio C, Piccoli M, Cornaglia G, Mazzariol A (2013) Klebsiella pneumoniae harbouring OXA-48 carbapenemase in a Libyan refugee in Italy. Clin Microbiol Infect 19:E409–E411

    Article  CAS  Google Scholar 

  114. Schubert S (2014) Identifizierung von Antibiotika in urbanen Abwassersystem – Akkumulation an Sediment und Klärschlamm. Präv Gesundheitsfr 9:171–174

    Article  Google Scholar 

  115. Rijksinstitut voor Volksgezondheid en Milieu (2011) Veelgestelde vragen ESBL. http://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Veelgestelde_vragen/Infectieziekten/Veelgestelde_vragen_ESBL. Zugegriffen: 26. Okt. 2014.

  116. Bundesinstitut für Risikobwertung (2015) Fragen und Antworten zu ESBL- und/oder AmpC-bildenden antibiotikaresistenten Keimen; Aktualisiere FAQ vom 19.01.2015. http://www.bfr.bund.de/cm/343/fragen-und-antworten-zu-esbl-und-ampc-bildenden-antibiotikaresistenten-keimen.pdf. Zugegriffen: 8. Juni 2015

  117. Yahav D, Farbman L, Leibovici L, Paul M (2012) Colistin: new lessons on an old antibiotic. Clin Microbiol Infect 18:18–29

    Article  PubMed  CAS  Google Scholar 

  118. Livermore DM (2012) Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med 27:128–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Canton R, Akova M, Carmeli Y et al (2012) Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431

    Article  PubMed  CAS  Google Scholar 

  120. Karageorgopoulos DE, Wang R, Yu XH, Falagas ME (2012) Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother 67:255–268

    Article  PubMed  CAS  Google Scholar 

  121. Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6:593–600

    Article  PubMed  Google Scholar 

  122. Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N (2011) What remains against carbapenem-resistant enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37:415–419

    Article  PubMed  CAS  Google Scholar 

  123. Oostdijk EA, Smits L, de Smet AM, Leverstein-van Hall MA, Kesecioglu J, Bonten MJ (2013) Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med 39:653–660

    Article  PubMed  CAS  Google Scholar 

  124. Daikos GL, Tsaousi S, Tzouvelekis LS et al (2014) Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 58:2322–2328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Tumbarello M, Viale P, Viscoli C et al (2012) Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55:943–950

    Article  PubMed  CAS  Google Scholar 

  126. Durante-Mangoni E, Signoriello G, Andini R et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358

    Article  PubMed  CAS  Google Scholar 

  127. Aydemir H, Akduman D, Piskin N et al (2013) Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 141:1214–1222

    Article  PubMed  CAS  Google Scholar 

  128. Theuretzbacher U (2012) Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin Infect Dis 54:1785–1792

    Article  PubMed  CAS  Google Scholar 

  129. Spellberg B (2011) The antibiotic crisis: can we reverse 65 years of failed stewardship? Arch Intern Med 171:1080–1081

    Article  PubMed  PubMed Central  Google Scholar 

  130. Federal Drug Administration (2004) Innovation or stagnation: challenge and opportunity on the critical path to new medical products. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html. Zugegriffen: 13. Okt. 2014

  131. Idelevich EA, von Eiff C, Friedrich AW et al (2011) In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin. Antimicrob Agents Chemother 55:4416–4419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Weisman LE, Thackray HM, Steinhorn RH et al (2011) A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 128:271–279

    Article  PubMed  Google Scholar 

  133. Romani AA, Baroni MC, Taddei S et al (2013) In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. J Pept Sci 19:554–565

    Article  PubMed  CAS  Google Scholar 

  134. Roos D, Dijksman LM, Tijssen JG, Gouma DJ, Gerhards MF, Oudemans-van Straaten HM (2013) Systematic review of perioperative selective decontamination of the digestive tract in elective gastrointestinal surgery. Br J Surg 100:1579–1588

    Article  PubMed  CAS  Google Scholar 

  135. de Smet AM, Bonten MJ, Kluytmans JA (2012) For whom should we use selective decontamination of the digestive tract? Curr Opin Infect Dis 25:211–217

    Article  PubMed  CAS  Google Scholar 

  136. Daneman N, Sarwar S, Fowler RA, Cuthbertson BH, Su DCSG (2013) Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 13:328–341

    Article  PubMed  Google Scholar 

  137. Sinha B, van Assen S, Friedrich AW (2014) Important issues for perioperative systemic antimicrobial prophylaxis in surgery. Curr Opin Anaesthesiol 27:377–381

    Article  PubMed  CAS  Google Scholar 

  138. Huang SS, Septimus E, Kleinman K et al (2013) Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 368:2255–2265

    Article  PubMed  CAS  Google Scholar 

  139. Climo MW, Yokoe DS, Warren DK et al (2013) Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med 368:533–542

    Article  PubMed  CAS  Google Scholar 

  140. Derde LP, Cooper BS, Goossens H et al (2014) Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. Lancet Infect Dis 14:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  141. Schweickert B, Eckmanns T, Bärwolff S, Wischnewski N, Meyer E (2014) Surveillance des Antibiotikaverbrauchs in Krankenhäusern – Aufgaben des öffentlichen Gesundheitsdienstes. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57

  142. de With K, Allerberger F, Amann S et al (2013) S3 Leitlinie: Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF Registernummer 092/001, Version 15. 12. 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Köck.

Ethics declarations

Interessenkonflikte

Prof. Dr. Wieler, Prof. Dr. Becker und Priv.-Doz. Dr. Köck erhielten/erhalten Förderungen im Rahmen der Zoonose-Forschungsverbünde „FBI-Zoo“ bzw. „MedVet-Staph“ durch das Bundesministerium für Bildung und Forschung. Dr. Idelevich erhielt Förderungen im Rahmen des Programms „Innovative Medizinische Forschung“ (IMF) der Medizinischen Fakultät der Universität Münster für die Untersuchungen zur Prävention und Therapie mit Bakteriophagenendolysinen.

Priv.-Doz. Dr. Köck erhielt Zuwendungen von Becton Dickinson, Pfizer, Paul Hartmann, B. Braun Melsungen, MSD Sharpe & Dohme und Astellas Pharma. Prof. Dr. Becker erhielt Zuwendungen von Cepheid, Cubist, Novartis, Oxoid, Pfizer und Siemens. Dr. Lanckohr erhielt Zuwendungen von Astellas Pharma, Pfizer, Novartis und Sanofi. Dr. Idelevich erhielt Zuwendungen von Pfizer, Astellas Pharma und Novartis.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idelevich, E., Lanckohr, C., Horn, D. et al. Antibiotika-resistente Erreger in Deutschland. Bundesgesundheitsbl. 59, 113–123 (2016). https://doi.org/10.1007/s00103-015-2261-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-015-2261-z

Schlüsselwörter

Keywords

Navigation