Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 26, 2015

Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites

  • Mohammed H. Al-Saleh EMAIL logo and Mohammad R. Irshidat

Abstract

Epoxy nanocomposites that are produced in a solvent-free environment suffer from the inadequate dispersion of nanofiller and poor interfacial interaction between the nanofiller and polymer matrix. In this work, the effect of replacing a portion of the epoxy resin with a viscosity reducing agent (VRA) on the structure, electrical and mechanical properties of carbon nanotube (CNT)/epoxy nanocomposite have been investigated. Optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the structure of the nanocomposite at the microscale and nanoscale, respectively. For nanocomposites without VRA, it was found that the addition of CNT degrades the tensile strength and toughness; meanwhile, it enhances the flexural modulus, Young’s modulus and electrical conductivity of the nanocomposite. However, the addition of VRA retained the tensile strength of the epoxy system and maintained the improvements in flexural strength and electrical conductivity that have been achieved due to CNT addition.


Corresponding author: Mohammed H. Al-Saleh, Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, Jordan, e-mail:

Acknowledgments

The authors would like to thank the Scientific Research Support Fund, the Ministry of Higher Education and Scientific Research, Amman, Jordan for the financial support of this research (EIT/1/12/2012). In addition, we would like to thank Eng. Maisa S. Lafi for preparing the nanocomposites.

References

[1] Giliopoulos DJ, Triantafyllidis KS, Gournis D. In Carbon Nanotube Enhanced Aerospace Composite Materials, Paipetis A, Kostopoulos V, Eds., Springer: Netherlands, 2013, pp 155–183.10.1007/978-94-007-4246-8_5Search in Google Scholar

[2] Korayem AH, Barati MR, Simon GP, Zhao XL, Duan WH. Compos. Part A 2014, 61, 126–133.10.1016/j.compositesa.2014.02.016Search in Google Scholar

[3] Zhu H. Development of epoxy-organoclay nanocomposite as high performance coating and as matrix material of durable GFRP composite for civil engineering applications. Ph.D. Hong Kong University of Science and Technology (Hong Kong), 2009.Search in Google Scholar

[4] Azeez AA, Rhee KY, Park SJ, Hui D. Compos. Part B 2013, 45, 308–320.10.1016/j.compositesb.2012.04.012Search in Google Scholar

[5] Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.10.1016/j.compscitech.2008.06.018Search in Google Scholar

[6] Breuer O, Sundararaj U. Polym. Compos. 2004, 25, 630–645.10.1002/pc.20058Search in Google Scholar

[7] Khare R, Bose S. J. Miner. Mater. Charact. Eng. 2005, 4, 31–46.10.4236/jmmce.2005.41004Search in Google Scholar

[8] Andrews R, Weisenberger M. Curr. Opin. Solid State Mater. Sci. 2004, 8, 31–37.10.1016/j.cossms.2003.10.006Search in Google Scholar

[9] Maruyama B, Alam K. SAMPE J. 2002, 38, 59–70.10.1353/not.2002.0134Search in Google Scholar

[10] Xie X-L, Mai Y-W, Zhou X-P. Mater. Sci. Eng., R 2005, 49, 89–112.10.1016/j.mser.2005.04.002Search in Google Scholar

[11] Ma P-C, Siddiqui NA, Marom G, Kim J-K. Compos. Part A 2010, 41, 1345–1367.10.1016/j.compositesa.2010.07.003Search in Google Scholar

[12] Paul DR, Robeson LM. Polymer 2008, 49, 3187–3204.10.1016/j.polymer.2008.04.017Search in Google Scholar

[13] Ganguli S, Aglan H, Dean D. J. Elastom. Plast. 2005, 37, 19–35.10.1177/0095244305045927Search in Google Scholar

[14] Shirkavand Hadavand B, Mahdavi Javid K, Gharagozlou M. Mater. Des. 2013, 50, 62–67.10.1016/j.matdes.2013.02.039Search in Google Scholar

[15] Montazeri A, Montazeri N. Mater. Des. 2011, 32, 2301–2307.10.1016/j.matdes.2010.11.003Search in Google Scholar

[16] Montazeri A, Chitsazzadeh M. Mater. Des. 2014, 56, 500–508.10.1016/j.matdes.2013.11.013Search in Google Scholar

[17] Sydlik SA, Lee J-H, Walish JJ, Thomas EL, Swager TM. Carbon 2013, 59, 109–120.10.1016/j.carbon.2013.02.061Search in Google Scholar

[18] Miyagawa H, Rich MJ, Drzal LT. Thermochim. Acta 2006, 442, 67–73.10.1016/j.tca.2006.01.016Search in Google Scholar

[19] Sandler J, Shaffer MS., Prasse T, Bauhofer W, Schulte K, Windle A. Polymer 1999, 40, 5967–5971.10.1016/S0032-3861(99)00166-4Search in Google Scholar

[20] Song YS, Youn JR. Carbon 2005, 43, 1378–1385.10.1016/j.carbon.2005.01.007Search in Google Scholar

[21] Ma PC, Kim J-K, Tang BZ. Compos. Sci. Technol. 2007, 67, 2965–2972.10.1016/j.compscitech.2007.05.006Search in Google Scholar

[22] Kim JA, Seong DG, Kang TJ, Youn JR. Carbon 2006, 44, 1898–1905.10.1016/j.carbon.2006.02.026Search in Google Scholar

[23] Allaoui A, Bai S, Cheng H., Bai J. Compos. Sci. Technol. 2002, 62, 1993–1998.10.1016/S0266-3538(02)00129-XSearch in Google Scholar

[24] Geng Y, Liu MY, Li J, Shi XM, Kim JK. Compos. Part A 2008, 39, 1876–1883.10.1016/j.compositesa.2008.09.009Search in Google Scholar

[25] Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Chem. Phys. Lett. 2003, 370, 820–824.10.1016/S0009-2614(03)00187-8Search in Google Scholar

[26] Theodore M, Hosur M, Thomas J, Jeelani S. Mater. Sci. Eng.: A 2011, 528, 1192–1200.10.1016/j.msea.2010.09.095Search in Google Scholar

[27] Lau K, Lu M, Chun-ki Lam, Cheung H, Sheng F-L, Li H-L. Compos. Sci. Technol. 2005, 65, 719–725.10.1016/j.compscitech.2004.10.005Search in Google Scholar

[28] King JA, Klimek DR, Miskioglu I, Odegard GM. J. Appl. Polym. Sci. 2013, 128, 4217–4223.10.1002/app.38645Search in Google Scholar

[29] Hussain F, Hojjati M, Okamoto M, Gorga RE. J. Compos. Mater. 2006, 40, 1511–1575.10.1177/0021998306067321Search in Google Scholar

[30] Al-Saleh MH, Sundararaj U. Carbon 2009, 47, 2–22.10.1016/j.carbon.2008.09.039Search in Google Scholar

Received: 2015-6-2
Accepted: 2015-7-21
Published Online: 2015-8-26
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2015-0245/html
Scroll to top button