Skip to main content

Advertisement

Log in

Chlorella Pyrenoidosa Mediated Lipid Production Using Malaysian Agricultural Wastewater: Effects of Photon and Carbon

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Light and carbon being the vital ingredients of photosynthetic reactions can be exploited for algal culture productivity and yield enhancement to effectively treat wastewater by significantly reducing the presence of organic and inorganic compounds. This communication reports the photon flux (light intensity) and glucose (C6H12O6) concentration (as carbon source) dependent improvement of the biomass and lipid production in Chlorella pyrenoidosa (CP) microalgae abundant in Malaysian palm oil mill sewage. Cultures having density 150 mol.m−2 s−1 are grown under varying light flux and temperature. Evaluations of algal productivity are made for three light cycles (ratio of h in light to dark) such as 24:0, 16:8, and 8:16. CP culture with continuous illumination (24:0) produced highest lipid content of 17 mg. Conversely, two other cycles (16:8 and 8:16) yielded 13.10 and 9.43 mg, respectively. The CP growth efficacy of palm oil mill effluent (POME) and subsequent drop in nutrients is demonstrated. Furthermore, the specific growth rate with light is observed to be comparable to the one achieved via C6H12O6 mediated growth. Production of CP for the biomass and lipid generation is optimized using 5 L batch culture grown for 2 weeks duration, where amounts of biomass as high as 0.68 gL−1 d−1 mgCDW−1 is achieved. However, 250 mL batch culture grown for 4 weeks generated a maximum biomass of 0.009 gL−1 d−1 mgCDW−1. The gradual reduction (after 2 days) of organic carbon and nutrients in the culture is attributed to the usage of carbon source mediated microalgae growth and subsequent lipid production. Eventually, CP manifested the removal of organic carbon amounts to 34, 65, and 47 % with the carbon per total nitrogen (C/TN) ratio of 100:7, 100:13, and 100:32, respectively. It is established that POME (as carbon enriched media) assisted enhanced CP growth under illumination can considerably reduce the presence of organic and inorganic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, Y.: Biofuels from microalgae. Biotechnol. Prog. 24, 815–820 (2008)

    Google Scholar 

  2. Kamyab, H., Lee, C.T., Din, M.F.M., Ponraj, M., Mohamad, S.E., Sohrabi, M.: Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalination Water Treat. 52, 3579–3584 (2014)

    Article  Google Scholar 

  3. Kamyab, H., Din, M.F.M., Tin Lee, C., Keyvanfar, A., Shafaghat, A., Abd Majid, M.Z., Ponraj, M., Xiao Yun, T.: Lipid production by microalgae chlorella pyrenoidosa cultivated in palm oil mill effluent (POME) using hybrid photo bioreactor (HPBR). Desalination Water Treat. 55, 3737–3749 (2015)

    Article  Google Scholar 

  4. Ometto, F., Whitton, R., Coulon, F., Jefferson, B., Villa, R.: Improving the energy balance of an integrated microalgal wastewater treatment process. Waste Biomass Valoriz. 5(2), 245–253 (2014)

    Article  Google Scholar 

  5. Khan, S.A., Rashmi, M.Z.H., Prasad, S., Banerjee, U.C.: Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 13(9), 2361–2372 (2009)

    Article  Google Scholar 

  6. Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S.: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production A critical review. Bioresour. Technol. 102(1), 71–81 (2011)

    Article  Google Scholar 

  7. Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14(1), 217–232 (2010)

    Article  Google Scholar 

  8. Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G.: Biodiesel production by microalgal biotechnology. Appl. Energy 87(1), 38–46 (2010)

    Article  Google Scholar 

  9. Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31(7), 1043–1049 (2009)

    Article  Google Scholar 

  10. Xu, H., Miao, X., Wu, Q.: High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126(4), 499–507 (2006)

    Article  Google Scholar 

  11. Wen, Z.Y., Chen, F.: Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: effects of silicate and glucose. J. Ind. Microbiol. Biotechnol. 25(4), 218–224 (2000)

    Article  Google Scholar 

  12. Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97(6), 841–846 (2006)

    Article  Google Scholar 

  13. Shen, Y., Yuan, W., Pei, Z., Mao, E.: Heterotrophic culture of chlorella protothecoides in various nitrogen sources for lipid production. Appl. Biochem. Biotechnol. 160(6), 1674–1684 (2010)

    Article  Google Scholar 

  14. Pulz, O., Scheibenbogen, K., Groß, W.: Biotechnology with Cyanobacteria and Microalgae Biotechnology Set, pp. 105–136. Wiley-VCH Verlag GmbH, Germany pp (2008)

    Google Scholar 

  15. Lee, K., Lee, C.G.: Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioprocess Eng. 6(3), 194–199 (2001)

    Article  Google Scholar 

  16. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009)

    Article  Google Scholar 

  17. Rubin, E.M.: Genomics of cellulosic biofuels. Nature 454(7206), 841–845 (2008)

    Article  Google Scholar 

  18. Costa, J.A.V., de Morais, M.G.: The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 102(1), 2–9 (2011)

    Article  Google Scholar 

  19. Yue, L., Chen, W.: Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers. Manag. 46(11–12), 1868–1876 (2005)

    Article  Google Scholar 

  20. Wu, T.Y., Mohammad, A.W., Jahim, J.M., Anuar, N.: A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol. Adv. 27(1), 40–52 (2009)

    Article  Google Scholar 

  21. Martin-Jézéquel, V., Hildebrand, M., Brzezinski, M.: Silicon metabolism in diatoms: implications for growth. J. Phycol. 36, 821–840 (2000)

    Article  Google Scholar 

  22. Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y.: Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45(1), 11–36 (2011)

    Article  Google Scholar 

  23. Niklas, K.: Carbon/nitrogen/phosphorus allometric relations across species. In: White, P., Hammond, J. (eds.) The Ecophysiology of Plant-Phosphorus Interactions, pp. 9–30. Springer, Netherlands (2008)

    Chapter  Google Scholar 

  24. Martínez, M.E., Jiménez, J.M., El Yousfi, F.: Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour. Technol. 67(3), 233–240 (1999)

    Article  Google Scholar 

  25. Zhang, L., Happe, T., Melis, A.: Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4), 552–561 (2002)

    Article  Google Scholar 

  26. Roden, E.E., Zachara, J.M.: Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30(5), 1618–1628 (1996)

    Article  Google Scholar 

  27. Raven, J., Evans, M.W., Korb, R.: The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60(2–3), 111–150 (1999)

    Article  Google Scholar 

  28. Louhasakul, Y., Cheirsilp, B., Prasertsan, P.: Valorization of palm oil mill effluent into lipid and cell-bound lipase by marine yeast yarrowia lipolytica and their application in biodiesel production. Waste Biomass Valoriz. 1–10 (2015). doi:10.1007/s12649-015-9451-7

  29. Kamyab, H., Fadhil, M., Lee, C., Ponraj, M., Soltani, M., Eva, S.: Micro–macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J. Teknol. 5, 1–4 (2014)

    Google Scholar 

  30. Ahmad, L., Ismail, A., Bhatia, S.: Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1), 87–95 (2003)

    Article  Google Scholar 

  31. Hassan, M., Shirai, Y., Ariff, A., Karim, M.A.: Production of organic acids from palm oil mill effluent during continuous anaerobic treatment. Asia Pac. J. Molec. Biol. Biotechnol. 7(2), 179–184 (1999)

    Google Scholar 

  32. Janssen, M., Kuijpers, T.C., Veldhoen, B., Ternbach, M.B., Tramper, J., Mur, L.R., Wijffels, R.H.: Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13-87 s. J. Biotechnol. 70, 323–333 (1999)

    Article  Google Scholar 

  33. Suggett, D.J., Prášil, O., Borowitzka, M.A., Grinblat, Y.P., Dubinsky, Z.: The study of phytoplankton photosynthesis by photoacoustics chlorophyll a fluorescence. In: Aquatic Sciences: Methods and Applications, pp. 311–315. Springer, Netherlands (2010)

  34. Eaton., A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E.: Standard Methods for The Examination of Water And Wastewater. American Public Health Association, Washington (2005)

  35. Kamyab, H., Din, M.F.M., Keyvanfar, A., Majid, M.Z.A., Talaiekhozani, A., Shafaghat, A., Ismail, H.H.: Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75, 2400–2408 (2015)

    Article  Google Scholar 

  36. Griffiths, M., Harrison, S.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21(5), 493–507 (2009)

    Article  Google Scholar 

  37. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  38. Lee, K.Y., Lee, G.C.: Effect of light/dark cycles on wastewater treatments by microalga. Biotechnol. Bioprocess Eng. 6, 194–199 (2009)

    Article  Google Scholar 

  39. Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X.: Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89(5), 1275–1288 (2011)

    Article  Google Scholar 

  40. Jacob-Lopes, E., Scoparo, C.H.G., Lacerda, L.M.C.F., Franco, T.T.: Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem. Eng. Process. 48(1), 306–310 (2009)

    Article  Google Scholar 

  41. Grobbelaar, J.U., Nedbal, L., Tichy, V.: Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol. 8, 8 (1996)

    Google Scholar 

  42. Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M.: Effect of temperature and nitrogen concentration on the growth and lipid content of nannochloropsis oculata and chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48, 1146–1151 (2009)

    Article  Google Scholar 

  43. Barsanti, L., Gualtieri, P.: Algae: Anatomy, Biochemistry, and Biotechnology, 1st edn, p. 301. CRC Press Taylor & Francis Group, New York (2006)

    Google Scholar 

  44. Li, Y., Chen, Y.F., Chen, P., Min, M., Zhou, W., Martinez, B.: Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102, 5138–5144 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CRC, IPASA, and UTM for financial support via the Research University, FRGS, and MOSTI grants (Vote No. 04H09, 4F424, 02G75, 4F618). The authors would also like to acknowledge the support from Dr. Veeramuthu Ashokkumar and Tayebeh Khademi in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng Shiun Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyab, H., Din, M.F.M., Ghoshal, S.K. et al. Chlorella Pyrenoidosa Mediated Lipid Production Using Malaysian Agricultural Wastewater: Effects of Photon and Carbon. Waste Biomass Valor 7, 779–788 (2016). https://doi.org/10.1007/s12649-016-9556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9556-7

Keywords

Navigation