Skip to main content
Log in

Beryllium in the environment: Whether fatal for plant growth?

  • Mini Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Beryllium could be a threatening heavy metal pollutant in the agro-ecosystem that may severely affect the performance of crops. Beryllium is used in various industries to make nuclear weapons and reactors, aircraft and space vehicle structures, instruments, and X-ray machines, and its entry into the environment is alarming for the productivity and sustainability of the ecosystem. In this review, we present a contemporary synthesis of the existing data regarding the toxic effects of beryllium on toxicity on biochemical and physiological processes in plants. Moreover, uptake, translocation, and assimilation of beryllium and its interaction with some essential mineral elements are also discussed. Although limited data are available regarding biochemical responses of plants to beryllium toxicity, we tried to clarify some basic physiological and biochemical steps that can be hampered by beryllium in plants. We linked our hypothetical concepts with previous evidence and provide a comprehensive summary of all possible remediation strategies that can be used for plants. Overall, we hope this review will be beneficial due to its practical implications and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1993) Toxicological profile for beryllium. US Public Health Service, Department of Health & Human Services, Atlanta, GA, p 96

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2002) Toxicological profile for beryllium. Department of Health and Human Services, Public Health Service, Atlanta, GA

    Google Scholar 

  • Agrawal ND, Nirala SK, Shukla S, Mathur R (2015) Co-administration of adjuvants along with Moringa oleifera attenuates beryllium-induced oxidative stress and histopathological alterations in rats. Pharm Biol 53:1465–1473

    Article  Google Scholar 

  • Aldridge WN, Thomas M (1966) The inhibition of phosphoglucomutase by Beryllium. Biochem J 98:100–104

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S (2015) Cadmium toxicity in maize, consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Armiento G, Bellatreccia F, Cremisini C, Della Ventura G, Nardi E, Pacific R (2013) Beryllium natural background concentration and mobility a reappraisal examining the case of high Be-bearing pyroclastic rocks. Environ Monit Assess 185:559–572

    Article  CAS  Google Scholar 

  • Asami T, Fukazawa F (1985) Beryllium contents of uncontaminated soils and sediments in Japan. Soil Sci Plant Nutr 31:43–53

    Article  CAS  Google Scholar 

  • Asami T, Kubota M (1995) Background levels of soil beryllium in several countries. Environ Geochem Health 17:32–38

    Article  CAS  Google Scholar 

  • Axelrod B, Saltman P, Bandurski RS, Baker RS (1952) Phosphonexokinase in higher plants. J Biol Chem 197:89–96

    CAS  Google Scholar 

  • Basolo F (1956) Theories of acids, bases, amphoteric hydroxides and basic salts as applied to the chemistry of complex compounds. In: Bailar JC et al (eds) The chemistry of the coordination compounds. Reinhold Publishing Corp, New York, NY, p 834

    Google Scholar 

  • Batayneh AT (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9:153–162

    Article  CAS  Google Scholar 

  • Beus AA (1966) Geochemistry of beryllium and genetic types of beryllium deposits. W. H Freeman, San Francisco, p 401

    Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds, recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  Google Scholar 

  • Bhat PN, Pillai KC (1997) Beryllium in environmental air, water and soil. Water Air Soil Pollut 95(1–4):133–146

    CAS  Google Scholar 

  • Bohn Hinrich L, Seekamp G (1979) Beryllium effects on potatoes and oats in acid soil. Water Air Soil Pollut 11:319–322

    Article  CAS  Google Scholar 

  • Cataldo DA, Wildung RE, Garland TR (1987) Speciation of trace inorganic contaminants in plants and bioavailability to animals: an overview. J Environ Qual 16:289–295

    Article  CAS  Google Scholar 

  • Cochran KW, Zerwic MM, DuBois KP (1951) Studies on the mechanism of acute beryllium poisoning. J Pharmacol Exp Ther 102:165–178

    CAS  Google Scholar 

  • Cunningham LD (2004) Beryllium recycling in the United States in 2000. US Department of the Interior, US Geological Survey, NewYork

    Google Scholar 

  • Curtin GC, King HD, Mosier EL (1974) Movement of elements into the atmosphere from coniferous trees in subalpine forests of Colorado and Idaho. J Geochem Explor 3:245–263

    Article  CAS  Google Scholar 

  • Dabeka RW, Cao XL, Moisey J (2010) Dietary intakes of trace elements for the years 2003–2007 (unpublished data). Obtained from the Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario

  • Darwin GE, Buddery JH (1960) Beryllium. Butterworths, London, pp 164–175

    Google Scholar 

  • Davis RD, Beckett PHT, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49:395–408

    Article  CAS  Google Scholar 

  • Delic J (1992) Toxicity review 27 (Part 2): beryllium and beryllium compounds. Her Majesty’s Stationery Office, London. ISBN: 0118863436

    Google Scholar 

  • Drury JS, Shriner CR, Lewis EB, Towill LE, Hammons AS (1978) Reviews of the environmental effects of pollutants: VI. Beryllium. Prepared under IAG-D5-0403 by Oak Ridge National Laboratory, Union Carbide Corp., Oak Ridge, TN (EPA 600/1-78-028; NTIS PB-290966)

  • Encina CL, Becerra J (1986) Inhibition of plant cytokinesis by beryllium and its reversion by calcium. Environ Exp Bot 26(1):75–80

    Article  CAS  Google Scholar 

  • Goldberg ED (1965) Minor elements in seawater. In: Riley JP, Skinow GS (eds) Chemical oceanography. Academic Press, New York

    Google Scholar 

  • Greene TM, Lanzisera DV, Andrews L, Downs AJ (1998) Matrixisolation and density functional theory study of the reactions of laser-abated beryllium, magnesium, and calcium atoms with methane. J Am Chem Soc 120:6097–6104

    Article  CAS  Google Scholar 

  • Griffitts WR, Allaway WH, Groth DH (1977) Beryllium. Geochemistry and the environment. The relation of other selected trace elements to health and disease, vol II. National Academy of Sciences, US National Committee for Geochemistry, Washington, DC, pp 7–10

    Google Scholar 

  • Gutierrez R, Rubio-Arias H, Quintana R, Ortega J, Gutierrez M (2008) Heavy metals in water of the San Pedro River in Chihuahua, Mexico and its potential health risk. Int J Environ Res Publ Health 5:91–98

    Article  CAS  Google Scholar 

  • Hara T, Sonoda Y, Iwai I (1977) Growth response of cabbage plants to beryllium and strontium under water culture conditions. Soil Sci Plant Nutr 23:373–380

    Article  CAS  Google Scholar 

  • Hoagland MB (1952a) Beryllium and growth III the effect of beryllium on plant phosphatase. Arch Biochem Biophys 35:259–267

    Article  CAS  Google Scholar 

  • Hoagland MB (1952b) Beryllium and growth. II. The effect of beryllium on plant growth. Arch Biochem Biophys 35:249–258

    Article  CAS  Google Scholar 

  • Hopkins HT (1952) Inhibition of growth by benzene hexachloride isomers and protective effect of glucose as measured by cell counting technique. Plant Physiol 27:526

    Article  CAS  Google Scholar 

  • Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM et al (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soil and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kaiser G, Rallath GE, Tshoïpel P, Toïlg G (1972) Beitrag zur Optimierung der chelat-gas-chromato graphischen Berylliumbestimmung in organischen Matrices bei begrenzter Einwaage. Fresenius Zeitschrift fuÈr A nalytische Chemie 259:257–264

    Article  CAS  Google Scholar 

  • Kaplan DI, Sajwan KS, Adriano DC, Gettier S (1990) Phytoavailability and toxicity of beryllium and vanadium. Water Air Soil Pollut 53:203–212

    Article  CAS  Google Scholar 

  • Keilen K, Stahr K, Goltz H, Zottl H (1977) Pedochemistry of beryllium-investigations of a soil association in barhaldegranite area, southern Black-Forest. Geoderma 17:315–329

    Article  CAS  Google Scholar 

  • Kick H, Burger H, Sommer K (1980) Plant experiments on the uptake of beryllium and thallium by barley and rape. Landwirtsch Forsch 37:186–190 (in German)

    CAS  Google Scholar 

  • Kiedrowski L, Wroblewski JT, Costa E (1994) Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol Pharmacol 45:1050–1054

    CAS  Google Scholar 

  • King B (1965) Beryllium—its metallurgy and properties. University of California, Berkeley, pp 206–233

    Google Scholar 

  • Korte NE, Skopp J, Fuller WH, Niebla EE, Alesii BA (1976) Trace element movement in soils: influence of soil physical and chemical properties. Soil Sci 122:350–359

    Article  CAS  Google Scholar 

  • Kosak-Channing L (1986) Beryllium distribution in hydroponically grown tobacco plants. Plant Sci 46:175–180

    Article  CAS  Google Scholar 

  • Kramer DA (1996) Beryllium. Metals and minerals: US Geological survey minerals yearbook 1:107–112

    Google Scholar 

  • Krejci LE, Scheel LD (1966) The chemistry of beryllium. In: Stokinger HE (ed) Beryllium—its industrial hygiene aspects. Academic Press, New York, pp 45–131

    Google Scholar 

  • Lehr F (1926) Concerning the influence of beryllium on enzyme formation. Biochem Z 168:166

    CAS  Google Scholar 

  • Lovblad G (1977) Trace elements concentrations in some coal samples and possible emissions from coal combustion in Sweden. Swedish Water and Air Pollution Research Laboratory, Gothenburg, p 20

    Google Scholar 

  • Marschner H (1986) Mineral nutrition in higher plants. Academic Press, London

    Google Scholar 

  • Meehan WR, Smythe LE (1967) Occurrence of beryllium as a trace element in environmental materials. Environ Sci Technol 1:839–844

    Article  CAS  Google Scholar 

  • Miller JR, Hudson-Edwards KA, Lechler PJ, Preston D, Macklin MG (2004) Heavy metal contamination of water, soil and produce within riverine communities of the Rıo Pilcomayo basin, Bolivia. Sci Total Environ 320:189–209

    Article  CAS  Google Scholar 

  • Milstein C, Sanger F (1961) An amino acid sequence in the active centre of phosphoglucomutase. Biochem J 79:456

    Article  CAS  Google Scholar 

  • Momot O, Synzynys B (2005) Toxic aluminum and heavy metals in groundwater of middle Russia: health risk assessment. Int J Environ Res Public Health 2:214–218

    Article  CAS  Google Scholar 

  • Mueller P, Flacke W, Hoeffel I (1986) Development of a biomonitoring system for the Hoecherberg area. Saarbrücken, Federal Republic of Germany, Institute for Biogeography. Umweltforschungs plan des Bundesministers des Innern (Research Report No. 109.02.001) (in German)

  • Mukhina ST (1967) Effect of magnesium on oxidative processes in rat liver and lung homogenates as a result of experimental beryllium intoxication. Gigiena Truda i Professionalnye Zabolevaniia 11:43–46 (in Russian)

    CAS  Google Scholar 

  • Muller-Quernheim J (2005) Chronic beryllium disease. Orphanet. http://www.orpha.net/data/petho/GB/uk-CBD.pdf

  • Naidu A, Nirmala J, Sivarama K, Sastry (1979) Beryllium toxicity in Neurospora crassa. J Biosci 1:279–287

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B Chem Phys 1:3–26

    Article  CAS  Google Scholar 

  • Nikonova NN (1967) On the accumulation of beryllium, molybdenum, zirconium, yttrium, and other rare elements in plants of South Ural. Izv. Sib. Akad. Nauk. SSSR Ser. Biol Med 3:25–29 (in Russian)

    CAS  Google Scholar 

  • Petzow G, Aldinger F (1974) Beryllium and beryllium compounds. In: Bartholomé E, Bickert E, Hellmann H, Ley H (eds) Ullmanns encyclopedia of technical chemistry. Verlag Chemie, Weinheim, pp 442–458 (in German)

    Google Scholar 

  • Pinto NP (1979) In: Floyd DR, Lowe JN (eds) Beryllium science and technology, 2nd edn. Plenum, New York, pp 319–350

    Chapter  Google Scholar 

  • Rasheed A, Mutnuri L, Dattatreya PJ, Mohan DA (2012) Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India. Environ Monit Assess 184:1581–1592

    Article  Google Scholar 

  • Robinson JP, Harshman S, Najjar VA (1965) Catalytic properties of activated and nonactivated phosphoglucomutase. Biochemistry 4:401–405

    Article  CAS  Google Scholar 

  • Romney EM, Childress JD (1965) Effects of beryllium in plants and soil. Soil Sci 100:210–217

    Article  CAS  Google Scholar 

  • Romney EM, Childress JD, Alexander GV (1962) Beryllium and the growth of bush beans. Science 135:786–787

    Article  CAS  Google Scholar 

  • Sainsbury CL, Hamilton JC, Huffmann C (1968) Geochemical cycle of selected trace elements in the tin-tungsten-beryllium district, Western Seward Peninsula, Alaska—a reconnaissance study. Washington, DC, US Government Printing Office, pp 71 (US Geological Survey Bulletin 1242-F)

  • Sajwan KS, Ornes WH, Youngblood TV (1996) Beryllium phytotoxicity in soybeans. Water Air Soil Pollut 86(1–4):117–124

    Article  CAS  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B et al (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Espoo, Geological Survey of Finland. http://www.gtk.fi/publ/foregsatlas/

  • Seeger R, Schleicher G, Schw Einshaut P (1984) Untersuchungen zum berylliumvorkommen in pilzen. Deutsche Lebensmittel-R undschau 80:178–186

    CAS  Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. U. S. Geological Survey Professional Paper 1270

  • Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants, reasons, mechanisms and remediation possibilities—a review. Plant Physiol Biochem 107:104–115

    Article  CAS  Google Scholar 

  • Steinberg RA (1946) Specificity of potassium and magnesium for growth of Aspergillus niger. Am J Bot 33:210–214

    Article  CAS  Google Scholar 

  • Stonehouse AJ, Carrabine JA, Beaver WW (1965) In: Hausner H (ed) Beryllium—its metallurgy and properties. University of California, Berkeley, pp 191–205

    Google Scholar 

  • Sutherland EW, Cohn M, Posternak T, Cori CF (1949) The mechanism of the phosphoglucomutase reaction. J Biol Chem 180:1285–1295

    CAS  Google Scholar 

  • Taylor TP, Ding M, Ehler DS, Foreman TM, Kaszuba JP, Sauer NN (2003) Beryllium in the environment: a review. J Environ Sci Health Part A 38:439–469

    Article  Google Scholar 

  • Thorat DD, Mahadevan TN, Ghosh DK, Narayan S (2001) Beryllium concentrations in ambient air and its source identification. Environ Monit Assess 69(1):49–61

    Article  CAS  Google Scholar 

  • U.S. Geological Survey (USGS) (2014) Mineral commodity summaries, pp 196

  • Vaessen HAMG, Szteke B (2000) Beryllium in food and drinking water—a summary of available knowledge. Food Addit Contam 17:149–159

    Article  CAS  Google Scholar 

  • Walsh K, Rees GH (1978) Beryllium compounds. In: Kirk RE, Othmer DF (eds) Encyclopedia of chemical technology. Wiley, New York, pp 824–829

    Google Scholar 

  • WHO (2009) Beryllium in drinking-water. http://www.who.int/water_sanitation_health/dwq/chemicals/beryllium2/en/

  • Wilke BM (1987) Effects of inorganic pollutants on microbial processes. Berlin (West), Umweltbundesmt (Research Report No. 10701006) (in German)

  • Williams RJB, Le Riche HH (1968) The effect of traces of beryllium on the growth of kale, grass, and mustard. Plant Soil 29:317–326

    Article  CAS  Google Scholar 

  • Willis HH, Florig HK (2002) Potential exposures and risks from beryllium-containing products. Risk Anal 22(5):1019–1033

    Article  Google Scholar 

  • Wilson AF, Hudson DR (1967) The discovery of beryllium-bearing sapphirine in the granulites of the Musgrave Ranges (Central Australia). Chem Geol 2:209–215

    Article  CAS  Google Scholar 

  • Witschi H (1968) Inhibition of deoxyribonucleic acid synthesis in regenerating rat liver by beryllium. Lab Invest 19:67

    CAS  Google Scholar 

  • Witschi H (1970) Effects of beryllium on deoxyribonucleic acid-synthesizing enzymes in regenerating rat liver. Biochem J 120:623–634

    Article  CAS  Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17:582–590

    Article  Google Scholar 

  • Zhang F, Yang M, Zhang B (2012) Beryllium-7 activity concentration in maize during the growth period. J Radioanal Nucl Chem 292:75–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for support from the National Natural Science Foundation of China (31271665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Yang.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.N., Tanveer, M., Hussain, S. et al. Beryllium in the environment: Whether fatal for plant growth?. Rev Environ Sci Biotechnol 15, 549–561 (2016). https://doi.org/10.1007/s11157-016-9412-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9412-z

Keywords

Navigation