Skip to main content
Log in

Current Status of Renal Denervation in Hypertension

  • Hypertension (AJ Peixoto and DS Geller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Over the past 7 years, prospective cohorts and small randomized controlled studies showed that renal denervation therapy (RDN) in patients with resistant hypertension is safe but associated with variable effects on BP which are not substantially better than medical therapy alone. The failure of the most rigorously designed randomized sham-control study, SYMPLICITY HTN-3, to meet the efficacy endpoints has raised several methodological concerns. However, recently reported studies and ongoing trials with improved procedural characteristics, identification of patients with true treatment-resistant hypertension on appropriate antihypertensive regimens further explore potential benefits of RDN. The scope of this review is to summarize evidence from currently completed studies on RDN and discuss future perspectives of RDN therapy in patients with resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26.

    Article  PubMed  Google Scholar 

  2. Wolf-Maier K, Cooper RS, Kramer H, et al. Hypertension treatment and control in 5 European countries, Canada, and the United States. Hypertension. 2004;43:10–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta AK, Nasothimiou EG, on behalf of the ASCOT investigators, Chane CL. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J Hypertens. 2011;29:2004–13.

    Article  CAS  PubMed  Google Scholar 

  4. Cushman WC, Ford CE, Cutler JA. For the ALLHAT Collaborative Research Group success and predictors of blood pressure control in diverse North American settings: The antihypertensive and lipid-lowering and treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens. 2002;4:393–404.

    Article  Google Scholar 

  5. Persell SD. Prevalence of resistant hypertension in the United States, 2003-2008. Hypertension. 2011;57:1076–80.

    Article  CAS  PubMed  Google Scholar 

  6. Egan BM, Zhao Y, Axon RN, et al. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124:1046–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.

    Article  CAS  PubMed  Google Scholar 

  8. Daugherty SL, Powers JD, Magid DJ, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125:1635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lohmeier TE, Hildebrandt DA, Warren S, et al. Recent insights into the interactions between the baroreflex and the kidneys in hypertension. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R828–36.

    Article  CAS  PubMed  Google Scholar 

  10. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.

    CAS  PubMed  Google Scholar 

  11. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.

    Article  PubMed  Google Scholar 

  12. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.

    Article  CAS  PubMed  Google Scholar 

  13. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  14. Krum H, Schlaich MP, Böhm M, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the SYMPLICITY HTN-1 study. Lancet. 2013;383(9917):583–4.

    Google Scholar 

  15. SYMPLICITY HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (the SYMPLICITY HTN-2 Trial): a randomized controlled trial. Lancet. 2010;376:1903–9.

    Article  Google Scholar 

  16. Esler MD, Böhm M, Sievert H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9. This paper summarizes the 3 year follow-up data from this trial with data similar to the initial findings.

    Article  PubMed  Google Scholar 

  17. Mahfoud F, Ukena C, Schmieder RE, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128:132–40.

    Article  CAS  PubMed  Google Scholar 

  18. Bhatt DL, Kandzari DE, SYMPLICITY HTN-3 Investigators, O’Neill WW. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401. This paper summarizes the primary results of the sham controlled trial that changed the direction of renal denervation.

    Article  CAS  PubMed  Google Scholar 

  19. Kandzari D, Bhatt D, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36:219–27.

    Article  PubMed  Google Scholar 

  20. Tzafriri AR, Mahfoud F, Keating JH, Markham PM, Spognardi A, Wong G, et al. Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol. 2014;64:1079–87.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015;66:1766–75. Very important paper that illustrates the difference in norepinephrine spillover comparing different procedure of denervation illustrating how that used in SYMPLICITY HTN3 was not totally adequate for denervation.

    Article  PubMed  Google Scholar 

  22. Jung O, Gechter JL, Wunder C. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens. 2013;31:766–74. Important study to illustrate how patient adherence is discordant with patients recall of taking medications.

    Article  CAS  PubMed  Google Scholar 

  23. Ewen S, Meyer MR, Cremers B, Laufs U, Helfer AG, Linz D, et al. Blood catheter based renal denervation are not related to improvements in adherence to antihypertensive drugs measured by urine/plasma toxicological analysis. Clin Res Cardiol. 2015;104:1097–105.

    Article  CAS  PubMed  Google Scholar 

  24. Fadl Elmula FE, Hoffmann P, Larstorp AC, et al. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63(5):991–9.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson JA. Ethnic differences in cardiovascular drug response: potential contribution of pharmacogenetics. Circulation. 2008;118:1383–93.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the Global SYMPLICITY registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65(4):766–74. First data from renal denervation registry in Germany on patient outcomes and demographics of resistant hypertension patients having denervation procedure in Europe.

    Article  CAS  PubMed  Google Scholar 

  27. Rosa J, Widimský P, Toušek P, Petrák O, Čurila K, Waldauf P, et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2015;65:407–13. Important study comparing use of spironolactone now considered a key drug for resistant hypertension versus denervation.

    Article  CAS  PubMed  Google Scholar 

  28. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385:1957–65. Important outcome study that complements findings of the Prague-15 Study.

    Article  PubMed  Google Scholar 

  29. Desch S, Okon T, Heinemann D, Kulle K, Röhnert K, Sonnabend M, et al. Randomized sham controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65:1202–8. The study describes how denervation helps affect blood pressure in people without resistant hypertension.

    Article  CAS  PubMed  Google Scholar 

  30. Sievert H, Schofer J, Ormiston J, Hoppe UC, Meredith IT, Walters DL, et al. Renal denervation with percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. Euro Interven. 2015;10:1213–20. Important complementary study to previous comparative studies to illustrate how procedural differences can affect outcome.

    Google Scholar 

  31. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN Japan first randomized controlled trial of catheter based renal denervation in Asian patients. Circ J. 2015;79:1222–9.

    Article  PubMed  Google Scholar 

  32. Worthley SG, Tsioufis CP, Worthley MI, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34:2132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fadl Elmula FE, Jin Y, Yang WY, Thijs L, Lu YC, Larstorp AC. Meta-analysis of randomized controlled trials of renal denervation in treatment-resistant hypertension. Blood Press. 2015;24:263–74.

    Article  PubMed  Google Scholar 

  34. Witkowski A, Prejbisz A, Florczak E, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58:559–65.

    Article  CAS  PubMed  Google Scholar 

  35. Brandt MC, Mahfoud F, Reda S. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  PubMed  Google Scholar 

  36. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/ NCT02392351.

  37. Kandzari DE, Kario K, Mahfoud F, Cohen SA, Pilcher G, Pocock S, et al. Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J. 2016;171:82–91.

    Article  PubMed  Google Scholar 

  38. Schmieder RE, Ormiston JA, Neuzil P, Starek Z, Kay P, Dawood O et al. TCT-87 non-invasive renal denervation study using externally delivered focused ultrasound in severe resistant hypertension: 1 year follow up results. JACC. 2015; 66(15_S).

  39. Fischell TA, Ebner A, Gallo S, Ikeno F, Minarsch L, Vega F, et al. Transcatheter alcohol-mediated perivascular renal denervationwith the peregrine system: first-in-human experience. JACC Cardiovasc Interv. 2016;9(6):589–98. Very important alternative approach to denervation emulating the procedure used in animals.

    Article  PubMed  Google Scholar 

  40. Savard S, Frank M, Bobrie G, Plouin PF, Sapoval M, Azizi M. Eligibility for renal denervation in patients with resistant hypertension: when enthusiasm meets reality in real-life patients. J Am Coll Cardiol. 2012;60:2422–4.

    Article  PubMed  Google Scholar 

  41. Bakris GL, Townsend RR, Liu M, Cohen SA, D’Agostino R, Flack JM, et al. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014;64(11):1071–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Bakris.

Ethics declarations

Conflict of Interest

Alexander Briasoulis declares that he has no conflict of interest.

George L. Bakris reports non-financial support as a consultant for Vascular Dynamics, Kona, and Medtronic.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briasoulis, A., Bakris, G.L. Current Status of Renal Denervation in Hypertension. Curr Cardiol Rep 18, 107 (2016). https://doi.org/10.1007/s11886-016-0781-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0781-2

Keywords

Navigation