Skip to main content
Log in

Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ∼ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  4. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  5. Y. Zhang, J. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  6. B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).

    Article  ADS  Google Scholar 

  7. X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science 319, 1229 (2008).

    Article  ADS  Google Scholar 

  8. C. Berger et al., J. Phys. Chem. B. 108, 19912 (2004).

    Article  Google Scholar 

  9. Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura and H. Shinohara, Appl. Phys. Lett. 96, 263105 (2010).

    Article  ADS  Google Scholar 

  10. R. Sahin, E. Simsek and S. Akturk, Appl. Phys. Lett. 104, 053118 (2014).

    Article  ADS  Google Scholar 

  11. Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P. M. Ajayan and J. M. Tour, ACS Nano 5, 8187 (2011).

    Article  Google Scholar 

  12. J. S. Lee, C. W. Jang, J. H. Kim, D. H. Shin, S. Kim, S-H. Choi, K. Belay and R. G. Elliman, Carbon 66, 267 (2014).

    Article  Google Scholar 

  13. L. Baraton, Z. He, C. S. Lee, J-L. Maurice, C. S. Cojocaru, A-F. G. Lorenzon, Y. H. Lee and D. Pribat, Nanotechnology 22, 8 (2011).

    Article  Google Scholar 

  14. J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu and Y. Liu, J. Am. Chem. Soc. 133, 17548 (2011).

    Article  Google Scholar 

  15. S. J. Chae et al., RSC Adv. 5, 1343 (2015).

    Article  Google Scholar 

  16. V. P. Pham, K. H. Kim, M. H. Jeon, S. H. Lee, K. N. Kim and G. Y. Yeom, Carbon 95, 664 (2015).

    Article  Google Scholar 

  17. X. Li et al., Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  18. A. Capasso, E. Placidi, H. F. Zhan, E. Perfetto, J. M. Bell, Y. T. Gu and N. Motta, Carbon 68, 330 (2014).

    Article  Google Scholar 

  19. J. Kotakoski, A. V. Krasheninnikov, U. Kaiser and J. C. Meyer, Phys. Rev. Lett. 106, 105505 (2011).

    Article  ADS  Google Scholar 

  20. Y-H. Zhang, Y-B. Chen, K-G. Zhou, C-H. Liu, J. Zeng, H-L. Zhang and Y. Peng, Nanotechnology 20, 18 (2009).

    Google Scholar 

  21. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 3087 (2009).

    Article  ADS  Google Scholar 

  22. M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan and D. M. Manos, Carbon 45, 2229 (2007).

    Article  Google Scholar 

  23. L. V. Nang and E-T. Kim, J. Elec. Soc. 159, K93 (2012).

    Article  Google Scholar 

  24. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009).

    Article  ADS  Google Scholar 

  25. N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi and H. Marchetto, Adv. Funct. Mater. 18, 3506 (2008).

    Article  Google Scholar 

  26. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonck, Nanotechnology 19, 305604 (2008).

    Article  Google Scholar 

  27. M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan and D. M. Manos, Carbon 45, 2229 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.W., Shin, H., Lee, B. et al. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition. Journal of the Korean Physical Society 69, 536–540 (2016). https://doi.org/10.3938/jkps.69.536

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.536

Keywords

Profiles

  1. Sung Won Hwang